函數知識點總結
總結是對取得的成績、存在的問題及得到的經驗和教訓等方面情況進行評價與描述的一種書面材料,它可以給我們下一階段的學習和工作生活做指導,因此好好準備一份總結吧。如何把總結做到重點突出呢?下面是小編為大家整理的函數知識點總結,希望對大家有所幫助。
函數知識點總結1
三角和的公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
倍角公式
tan2A = 2tanA/(1-tan2 A)
Sin2A=2SinA?CosA
Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)3;
cos3A = 4(cosA)3 -3cosA
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
三角函數特殊值
α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2
α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)
a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2
α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2
α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3
α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)
α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2
α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1
α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞
α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1
α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
三角函數記憶順口溜
1三角函數記憶口訣
“奇、偶”指的是π/2的倍數的奇偶,“變與不變”指的是三角函數的.名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。
以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區間(π/2,π)上小于零,所以右邊符號為負,所以右邊為-sinα。
2符號判斷口訣
全,S,T,C,正。這五個字口訣的意思就是說:第一象限內任何一個角的四種三角函數值都是“+”;第二象限內只有正弦是“+”,其余全部是“-”;第三象限內只有正切是“+”,其余全部是“-”;第四象限內只有余弦是“+”,其余全部是“-”。
也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對應象限三角函數為正值的名稱。口訣中未提及的都是負值。
“ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對應的三角函數為正值。
3三角函數順口溜
三角函數是函數,象限符號坐標注。函數圖像單位圓,周期奇偶增減現。
同角關系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
中心記上數字一,連結頂點三角形。向下三角平方和,倒數關系是對角,
頂點任意一函數,等于后面兩根除。誘導公式就是好,負化正后大化小,
變成銳角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,
將其后者視銳角,符號原來函數判。兩角和的余弦值,化為單角好求值,
余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。
計算證明角先行,注意結構函數名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;
三角函數反函數,實質就是求角度,先求三角函數值,再判角取值范圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。
函數知識點總結2
一次函數的定義
一般地,形如y=kx+b(k,b是常數,且k≠0)的函數,叫做一次函數,其中x是自變量。當b=0時,一次函數y=kx,又叫做正比例函數。
1、一次函數的解析式的形式是y=kx+b,要判斷一個函數是否是一次函數,就是判斷是否能化成以上形式。
2、當b=0,k≠0時,y=kx仍是一次函數。
3、當k=0,b≠0時,它不是一次函數。
4、正比例函數是一次函數的特例,一次函數包括正比例函數。
一次函數的圖像及性質
1、在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。
2、一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(—b/k,0)。
3、正比例函數的圖像總是過原點。
4、k,b與函數圖像所在象限的關系:
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
當k>0,b>0時,直線通過一、二、三象限;
當k>0,b<0時,直線通過一、三、四象限;
當k<0,b>0時,直線通過一、二、四象限;
當k<0,b<0時,直線通過二、三、四象限;
當b=0時,直線通過原點O(0,0)表示的是正比例函數的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
一次函數的圖象與性質的口訣
一次函數是直線,圖象經過三象限;
正比例函數更簡單,經過原點一直線;
兩個系數k與b,作用之大莫小看,
k是斜率定夾角,b與y軸來相見,
k為正來右上斜,x增減y增減;
k為負來左下展,變化規律正相反;
k的絕對值越大,線離橫軸就越遠。
拓展閱讀:一次函數的解題方法
理解一次函數和其它知識的聯系
一次函數和代數式以及方程有著密不可分的聯系。如一次函數和正比例函數仍然是函數,同時,等號的兩邊又都是代數式。需要注意的是,與一般代數式有很大區別。首先,一次函數和正比例函數都只能存在兩個變量,而代數式可以是多個變量;其次,一次函數中的變量指數只能是1,而代數式中變量指數還可以是1以外的`數。另外,一次函數解析式也可以理解為二元一次方程。
掌握一次函數的解析式的特征
一次函數解析式的結構特征:kx+b是關于x的一次二項式,其中常數b可以是任意實數,一次項系數k必須是非零數,k≠0,因為當k = 0時,y = b(b是常數),由于沒有一次項,這樣的函數不是一次函數;而當b = 0,k≠0,y = kx既是正比例函數,也是一次函數。
應用一次函數解決實際問題
1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關聯的量,且其中一種量因另一種量的變化而變化;
2、找出具有相關聯的兩種量的等量關系之后,明確哪種量是另一種量的函數;
3、在實際問題中,一般存在著三種量,如距離、時間、速度等等,在這三種量中,當且僅當其中一種量時間(或速度)不變時,距離與速度(或時間)才成正比例,也就是說,距離(s)是時間(t)或速度( )的正比例函數;
4、求一次函數與正比例函數的關系式,一般采取待定系數法。
數形結合
方程,不等式,不等式組,方程組我們都可以用一次函數的觀點來理解。一元一次不等式實際上就看兩條直線上下方的關系,求出端點后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來認識,直線交點的橫坐標就是方程的解,至于二元一次方程組就是對應2條直線,方程組的解就是直線的交點,結合圖形可以認識兩直線的位置關系也可以把握交點個數。
如果一個交點時候兩條直線的k不同,如果無窮個交點就是k,b都一樣,如果平行無交點就是k相同,b不一樣。至于函數平移的問題可以化歸為對應點平移。k反正不變然后用待定系數法得到平移后的方程。這就是化一般為特殊的解題方法。
函數知識點總結3
一次函數知識點總結基本概念
1、變量:在一個變化過程中可以取不同數值的量。常量:在一個變化過程中只能取同一數值的量。
例題:在勻速運動公式svt中,v表示速度,t表示時間,s表示在時間t內所走的路程,則變量是________,常量是_______。在圓的周長公式C=2πr中,變量是________,常量是_________.
2、函數:一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數。
*判斷Y是否為X的函數,只要看X取值確定的時候,Y是否有唯一確定的值與之對應
1-12
例題:下列函數(1)y=πx(2)y=2x-1(3)y=(4)y=2-3x(5)y=x-1中,是一次函數的有()
x(A)4個(B)3個(C)2個(D)1個
3、定義域:一般的,一個函數的自變量允許取值的范圍,叫做這個函數的定義域。(x的取值范圍)一次函數
1..自變量x和因變量y有如下關系:
y=kx+b(k為任意不為零實數,b為任意實數)則此時稱y是x的一次函數。特別的,當b=0時,y是x的正比例函數。即:y=kx(k為任意不為零實數)
定義域:自變量的取值范圍,自變量的取值應使函數有意義;要與實際有意義。
2.當x=0時,b為函數在y軸上的截距。
一次函數性質:
1在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。
2一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。3.函數不是數,它是指某一變量過程中兩個變量之間的關系。
特別地,當b=0時,直線通過原點O(0,0)表示的是正比例函數的'圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。4、特殊位置關系
當平面直角坐標系中兩直線平行時,其函數解析式中K值(即一次項系數)相等
當平面直角坐標系中兩直線垂直時,其函數解析式中K值互為負倒數(即兩個K值的乘積為-1)
應用
一次函數y=kx+b的性質是:(1)當k>0時,y隨x的增大而增大;(2)當kx2B.x10,且y1>y2。根據一次函數的性質“當k>0時,y隨x的增大而增大”,得x1>x2。故選A。
判斷函數圖象的位置
例3.一次函數y=kx+b滿足kb>0,且y隨x的增大而減小,則此函數的圖象不經過()A.第一象限B.第二象限
C.第三象限D.第四象限
解:由kb>0,知k、b同號。因為y隨x的增大而減小,所以k
解析式:y=kx(k是常數,k≠0)必過點:(0,0)、(1,k)
走向:k>0時,圖像經過一、三象限;k0,y隨x的增大而增大;k0時,向上平移;當b0,圖象經過第一、三象限;k0,圖象經過第一、二象限;b0,y隨x的增大而增大;k0時,將直線y=kx的圖象向上平移b個單位;當b
若直線yxa和直線yxb的交點坐標為(m,8),則ab____________.已知函數y=3x+1,當自變量增加m時,相應的函數值增加()A.3m+1B.3mC.mD.3m-1
11、一次函數y=kx+b的圖象的畫法.
根據幾何知識:經過兩點能畫出一條直線,并且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數的圖
象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標軸的交點:(0,b),坐標或縱坐標為0的點.
b>0經過第一、二、三象限b0圖象從左到右上升,y隨x的增大而增大經過第一、二、四象限經過第二、三、四象限經過第二、四象限k0時,向上平移;當b
某個一次函數的值為0時,求相應的自變量的值.從圖象上看,相當于已知直線y=ax+b確定它與x軸的交點的橫坐標的值.
函數知識點總結4
一次函數:一次函數圖像與性質是中考必考的內容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應用性強。甚至有存在探究題目出現。
主要考察內容:
①會畫一次函數的圖像,并掌握其性質。
②會根據已知條件,利用待定系數法確定一次函數的解析式。
③能用一次函數解決實際問題。
④考察一ic函數與二元一次方程組,一元一次不等式的關系。
突破方法:
①正確理解掌握一次函數的概念,圖像和性質。
②運用數學結合的思想解與一次函數圖像有關的問題。
③掌握用待定系數法球一次函數解析式。
④做一些綜合題的訓練,提高分析問題的能力。
函數性質:
1.y的變化值與對應的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數,k≠0),∵當x增加m,k(x+m)+b=y+km,km/m=k。
2.當x=0時,b為函數在y軸上的點,坐標為(0,b)。
3當b=0時(即y=kx),一次函數圖像變為正比例函數,正比例函數是特殊的一次函數。
4.在兩個一次函數表達式中:
當兩一次函數表達式中的k相同,b也相同時,兩一次函數圖像重合;當兩一次函數表達式中的`k相同,b不相同時,兩一次函數圖像平行;當兩一次函數表達式中的k不相同,b不相同時,兩一次函數圖像相交;當兩一次函數表達式中的k不相同,b相同時,兩一次函數圖像交于y軸上的同一點(0,b)。若兩個變量x,y間的關系式可以表示成Y=KX+b(k,b為常數,k不等于0)則稱y是x的一次函數圖像性質
1、作法與圖形:通過如下3個步驟:
(1)列表.
(2)描點;[一般取兩個點,根據“兩點確定一條直線”的道理,也可叫“兩點法”。一般的y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點畫直線即可。
正比例函數y=kx(k≠0)的圖象是過坐標原點的一條直線,一般取(0,0)和(1,k)兩點。(3)連線,可以作出一次函數的圖象一條直線。因此,作一次函數的圖象只需知道2點,并連成直線即可。(通常找函數圖象與x軸和y軸的交點分別是-k分之b與0,0與b).
2、性質:
(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。
(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像都是過原點。
3、函數不是數,它是指某一變化過程中兩個變量之間的關系。
4、k,b與函數圖像所在象限:
y=kx時(即b等于0,y與x成正比例):
當k>0時,直線必通過第一、三象限,y隨x的增大而增大;當k0,b>0,這時此函數的圖象經過第一、二、三象限;當k>0,b
函數知識點總結5
一次函數
一、定義與定義式:
自變量x和因變量y有如下關系:
y=kx+b
則此時稱y是x的一次函數。
特別地,當b=0時,y是x的正比例函數。
即:y=kx (k為常數,k0)
二、一次函數的性質:
1、y的變化值與對應的x的變化值成正比例,比值為k
即:y=kx+b (k為任意不為零的實數b取任何實數)
2、當x=0時,b為函數在y軸上的截距。
三、一次函數的圖像及性質:
1、作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數的圖像一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)
2、性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(—b/k,0)正比例函數的圖像總是過原點。
3、k,b與函數圖像所在象限:
當k0時,直線必通過一、三象限,y隨x的增大而增大;
當k0時,直線必通過二、四象限,y隨x的增大而減小。
當b0時,直線必通過一、二象限;
當b=0時,直線通過原點
當b0時,直線必通過三、四象限。
特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。
這時,當k0時,直線只通過一、三象限;當k0時,直線只通過二、四象限。
四、確定一次函數的表達式:
已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。
(1)設一次函數的表達式(也叫解析式)為y=kx+b。
(2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b ①和y2=kx2+b ②
(3)解這個二元一次方程,得到k,b的值。
(4)最后得到一次函數的表達式。
五、一次函數在生活中的應用:
1、當時間t一定,距離s是速度v的一次函數。s=vt。
2、當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S—ft。
六、常用公式:(不全,希望有人補充)
1、求函數圖像的k值:(y1—y2)/(x1—x2)
2、求與x軸平行線段的中點:|x1—x2|/2
3、求與y軸平行線段的中點:|y1—y2|/2
4、求任意線段的長:(x1—x2)^2+(y1—y2)^2 (注:根號下(x1—x2)與(y1—y2)的平方和)
二次函數
I、定義與定義表達式
一般地,自變量x和因變量y之間存在如下關系:
y=ax^2+bx+c
(a,b,c為常數,a0,且a決定函數的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)
則稱y為x的二次函數。
二次函數表達式的右邊通常為二次三項式。
II、二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a0)
頂點式:y=a(x—h)^2+k [拋物線的頂點P(h,k)]
交點式:y=a(x—x)(x—x ) [僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]
注:在3種形式的互相轉化中,有如下關系:
h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a
III、二次函數的圖像
在平面直角坐標系中作出二次函數y=x^2的圖像,
可以看出,二次函數的圖像是一條拋物線。
IV、拋物線的性質
1、拋物線是軸對稱圖形。對稱軸為直線
x= —b/2a。
對稱軸與拋物線唯一的交點為拋物線的'頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2、拋物線有一個頂點P,坐標為
P( —b/2a,(4ac—b^2)/4a )
當—b/2a=0時,P在y軸上;當= b^2—4ac=0時,P在x軸上。
3、二次項系數a決定拋物線的開口方向和大小。
當a0時,拋物線向上開口;當a0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
4、一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab0),對稱軸在y軸左;
當a與b異號時(即ab0),對稱軸在y軸右。
5、常數項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6、拋物線與x軸交點個數
= b^2—4ac0時,拋物線與x軸有2個交點。
= b^2—4ac=0時,拋物線與x軸有1個交點。
= b^2—4ac0時,拋物線與x軸沒有交點。X的取值是虛數(x= —bb^2—4ac的值的相反數,乘上虛數i,整個式子除以2a)
V、二次函數與一元二次方程
特別地,二次函數(以下稱函數)y=ax^2+bx+c,
當y=0時,二次函數為關于x的一元二次方程(以下稱方程),
即ax^2+bx+c=0
此時,函數圖像與x軸有無交點即方程有無實數根。
函數與x軸交點的橫坐標即為方程的根。
1、二次函數y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
解析式頂點坐標對稱軸
y=ax^2(0,0) x=0
y=a(x—h)^2(h,0) x=h
y=a(x—h)^2+k(h,k) x=h
y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a
當h0時,y=a(x—h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h0時,則向左平行移動|h|個單位得到、
當h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x—h)^2+k的圖象;
當h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x—h)^2+k的圖象;
當h0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x—h)^2+k的圖象;
當h0,k0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x—h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a0)的圖象,通過配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了、這給畫圖象提供了方便、
2、拋物線y=ax^2+bx+c(a0)的圖象:當a0時,開口向上,當a0時開口向下,對稱軸是直線x=—b/2a,頂點坐標是(—b/2a,[4ac—b^2]/4a)、
3、拋物線y=ax^2+bx+c(a0),若a0,當x —b/2a時,y隨x的增大而減小;當x —b/2a時,y隨x的增大而增大、若a0,當x —b/2a時,y隨x的增大而增大;當x —b/2a時,y隨x的增大而減小、
4、拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2—4ac0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=
(a0)的兩根、這兩點間的距離AB=|x—x|
當△=0、圖象與x軸只有一個交點;
當△0、圖象與x軸沒有交點、當a0時,圖象落在x軸的上方,x為任何實數時,都有y0;當a0時,圖象落在x軸的下方,x為任何實數時,都有y0、
5、拋物線y=ax^2+bx+c的最值:如果a0(a0),則當x= —b/2a時,y最小(大)值=(4ac—b^2)/4a、
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值、
6、用待定系數法求二次函數的解析式
(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a0)、
(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x—h)^2+k(a0)、
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x—x)(x—x)(a0)、
7、二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現、
反比例函數
形如y=k/x(k為常數且k0)的函數,叫做反比例函數。
自變量x的取值范圍是不等于0的一切實數。
反比例函數圖像性質:
反比例函數的圖像為雙曲線。
由于反比例函數屬于奇函數,有f(—x)=—f(x),圖像關于原點對稱。
另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(2和—2)時的函數圖像。
當K0時,反比例函數圖像經過一,三象限,是減函數
當K0時,反比例函數圖像經過二,四象限,是增函數
反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。
知識點:
1、過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為| k |。
2、對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(xm)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)
函數知識點總結6
1二次函數的定義
一般地,形如y=ax2+bx+c(a,b,c為常數,a≠0)的函數叫做x的二次函數.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函數.
注意:(1)二次函數是關于自變量的二次式,二次項系數a必須是非零實數,即a≠0,而b,c是任意實數,二次函數的表達式是一個整式;
(2)二次函數y=ax2+bx+c(a,b,c是常數,a≠0),自變量x的取值范圍是全體實數;
(3)當b=c=0時,二次函數y=ax2是最簡單的二次函數;
(4)一個函數是否是二次函數,要化簡整理后,對照定義才能下結論,例如y=x2-x(x-1)化簡后變為y=x,故它不是二次函數.
2二次函數解析式的幾種形式
(1)一般式:y=ax2+bx+c (a,b,c為常數,a≠0).
(2)頂點式:y=a(x-h)2+k(a,h,k為常數,a≠0).
(3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點的橫坐標,即一元二次方程ax2+bx+c=0的兩個根,a≠0.
說明:(1)任何一個二次函數通過配方都可以化為頂點式y=a(x-h)2+k,拋物線的頂點坐標是(h,k),h=0時,拋物線y=ax2+k的`頂點在y軸上;當k=0時,拋物線a(x-h)2的頂點在x軸上;當h=0且k=0時,拋物線y=ax2的頂點在原點
3二次函數y=ax2+c的圖象與性質
(1)拋物線y=ax2+c的形狀由a決定,位置由c決定.
(2)二次函數y=ax2+c的圖象是一條拋物線,頂點坐標是(0,c),對稱軸是y軸.
當a>0時,圖象的開口向上,有最低點(即頂點),當x=0時,y最小值=c.在y軸左側,y隨x的增大而減小;在y軸右側,y隨x增大而增大.
當a<0時,圖象的開口向下,有最高點(即頂點),當x=0時,y最大值=c.在y軸左側,y隨x的增大而增大;在y軸右側,y隨x增大而減小.
(3)拋物線y=ax2+c與y=ax2的關系.
拋物線y=ax2+c與y=ax2形狀相同,只有位置不同.拋物線y=ax2+c可由拋物線y=ax2沿y軸向上或向下平行移動|c|個單位得到.當c>0時,向上平行移動,當c<0時,向下平行移動.
函數知識點總結7
一次函數y=kx+b的性質:(一次函數的圖像是一條直線)
1、一次函數ykxb(k0)經過(0,與y軸)點,(,0)點.與x軸交點坐標是(,0)交點坐標是(0,)。
2、k的正、負決定直線的傾斜方向
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
3、|k|的大小決定直線的傾斜程度
|k|越大,直線與x軸相交的銳角度數越大(直線陡);|k|越小,直線與x軸相交的銳角度數越小(直線緩);
4、b的.正負決定直線與y軸交點的位置當b>0時,直線與y軸交于y軸正半軸上;當b<0時,直線與y軸交于y軸負半軸上;當b=0時,直線經過原點。
5、k、b的符號不同,直線經過的象限也不同。
當k>0時,直線經過一、三象限;當k<0時,圖像經過二、四象限。進一步:
當k>0,b>0時,直線經過一、二、三象限(不經過第四象限)當k>0,b<0時,直線經過一、三、四象限(不經過第二象限)當k>0,b=0時,直線經過一、三、象限和原點
當k<0,b>0時,直線經過一、二、四象限(不經過第三象限)當k<0,b<0時,直線經過二、三、四象限(不經過第一象限)當k<0,b=0時,直線經過二、四、象限和原點
反過來:不經過第一象限指:經過二、三、四象限或經過二四象限和原點。其它類似。
函數知識點總結8
課題
3.5正比例函數、反比例函數、一次函數和二次函數
教學目標
1、掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質2、會用待定系數法確定函數的解析式
教學重點
掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質
教學難點
掌握正(反)比例函數、一次函數和二次函數的概念及其圖形和性質
教學方法
講練結合法
教學過程
(I)知識要點(見下表:)
第三章第29頁函數名稱解析式圖像正比例函數ykx(k0)0x反比例函數一次函數ykxb(k0)0x二次函數yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過點(0,0)及(1,k)的直線雙曲線,x軸、y軸是它的漸近線與直線ykx平行且過點(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時,y,4aR值域R4acb2a0時,y,4aba0時,在-,上為增2a函數,在,-單調性k0時,在,0,k0時為增函數0,上為減函數k0時,為增函數b上為減函數2ak0時為減函數k0時,在,0,k0時,為減函數0,上為增函數ba0時,在-,上為減2a函數,在,-b上為增函數2a奇偶性奇函數奇函數b=0時奇函數b=0時偶函數a0且x-ymin最值無無無b時,2a24acb4ab時,2a24acb4aa0且x-ymax
第三章第30頁b24acb2注:二次函數yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對稱軸x,頂點(,)
2a2a4a2拋物線與x軸交點坐標(m,0),(n,0)(II)例題講解
例1、求滿足下列條件的二次函數的解析式:(1)拋物線過點A(1,1),B(2,2),C(4,2)(2)拋物線的`頂點為P(1,5)且過點Q(3,3)
(3)拋物線對稱軸是x2,它在x軸上截出的線段AB長為2且拋物線過點(1,7)。2,
解:(1)設yax2bxc(a0),將A、B、C三點坐標分別代入,可得方程組為
abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設二次函數為ya(x1)25,將Q點坐標代入,即a(31)253,得
a2,故y2(x1)252x24x3
(3)∵拋物線對稱軸為x2;
∴拋物線與x軸的兩個交點A、B應關于x2對稱;∴由題設條件可得兩個交點坐標分別為A(2∴可設函數解析式為:ya(x2代入方程可得a1
∴所求二次函數為yx24x2,
2,0)、B(222,0)
2)(x22)a(x2)22a,將(1,7)
5),例2:二次函數的圖像過點(0,8),(1,(4,0)
(1)求函數圖像的頂點坐標、對稱軸、最值及單調區間(2)當x取何值時,①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4
例3:求函數f(x)x2x1,x[1,1]的最值及相應的x值
113x1(x)2,知函數的圖像開口向上,對稱軸為x
224111]上是增函數。∴依題設條件可得f(x)在[1,]上是減函數,在[,22131]時,函數取得最小值,且ymin∴當x[1,24131又∵11
函數知識點總結9
(一)、映射、函數、反函數
1、對應、映射、函數三個概念既有共性又有區別,映射是一種特殊的對應,而函數又是一種特殊的映射。
2、對于函數的概念,應注意如下幾點:
(1)掌握構成函數的三要素,會判斷兩個函數是否為同一函數。
(2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數關系式,特別是會求分段函數的解析式。
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復合函數,其中g(x)為內函數,f(u)為外函數。
3、求函數y=f(x)的反函數的一般步驟:
(1)確定原函數的值域,也就是反函數的定義域;
(2)由y=f(x)的解析式求出x=f—1(y);
(3)將x,y對換,得反函數的習慣表達式y=f—1(x),并注明定義域。
注意:
①對于分段函數的反函數,先分別求出在各段上的反函數,然后再合并到一起。
②熟悉的應用,求f—1(x0)的值,合理利用這個結論,可以避免求反函數的過程,從而簡化運算。
(二)、函數的解析式與定義域
1、函數及其定義域是不可分割的整體,沒有定義域的函數是不存在的,因此,要正確地寫出函數的解析式,必須是在求出變量間的對應法則的同時,求出函數的定義域。求函數的定義域一般有三種類型:
(1)有時一個函數來自于一個實際問題,這時自變量x有實際意義,求定義域要結合實際意義考慮;
(2)已知一個函數的解析式求其定義域,只要使解析式有意義即可。如:
①分式的分母不得為零;
②偶次方根的被開方數不小于零;
③對數函數的真數必須大于零;
④指數函數和對數函數的底數必須大于零且不等于1;
⑤三角函數中的正切函數y=tanx(x∈R,且k∈Z),余切函數y=cotx(x∈R,x≠kπ,k∈Z)等。
應注意,一個函數的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集)。
(3)已知一個函數的定義域,求另一個函數的.定義域,主要考慮定義域的深刻含義即可。
已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域。
2、求函數的解析式一般有四種情況
(1)根據某實際問題需建立一種函數關系時,必須引入合適的變量,根據數學的有關知識尋求函數的解析式。
(2)有時題設給出函數特征,求函數的解析式,可采用待定系數法。比如函數是一次函數,可設f(x)=ax+b(a≠0),其中a,b為待定系數,根據題設條件,列出方程組,求出a,b即可。
(3)若題設給出復合函數f[g(x)]的表達式時,可用換元法求函數f(x)的表達式,這時必須求出g(x)的值域,這相當于求函數的定義域。
(4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現其他未知量(如f(—x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式。
(三)、函數的值域與最值
1、函數的值域取決于定義域和對應法則,不論采用何種方法求函數值域都應先考慮其定義域,求函數值域常用方法如下:
(1)直接法:亦稱觀察法,對于結構較為簡單的函數,可由函數的解析式應用不等式的性質,直接觀察得出函數的值域。
(2)換元法:運用代數式或三角換元將所給的復雜函數轉化成另一種簡單函數再求值域,若函數解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元。
(3)反函數法:利用函數f(x)與其反函數f—1(x)的定義域和值域間的關系,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可采用此法求得。
(4)配方法:對于二次函數或二次函數有關的函數的值域問題可考慮用配方法。
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧。
(6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。
(7)利用函數的單調性求值域:當能確定函數在其定義域上(或某個定義域的子集上)的單調性,可采用單調性法求出函數的值域。
(8)數形結合法求函數的值域:利用函數所表示的幾何意義,借助于幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域。
2、求函數的最值與值域的區別和聯系
求函數最值的常用方法和求函數值域的方法基本上是相同的,事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值。因此求函數的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異。
如函數的值域是(0,16],最大值是16,無最小值。再如函數的值域是(—∞,—2]∪[2,+∞),但此函數無最大值和最小值,只有在改變函數定義域后,如x>0時,函數的最小值為2。可見定義域對函數的值域或最值的影響。
3、函數的最值在實際問題中的應用
函數的最值的應用主要體現在用函數知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤最大”或“面積(體積)最大(最小)”等諸多現實問題上,求解時要特別關注實際意義對自變量的制約,以便能正確求得最值。
(四)、函數的奇偶性
1、函數的奇偶性的定義:對于函數f(x),如果對于函數定義域內的任意一個x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函數f(x)就叫做奇函數(或偶函數)。
正確理解奇函數和偶函數的定義,要注意兩點:(1)定義域在數軸上關于原點對稱是函數f(x)為奇函數或偶函數的必要不充分條件;(2)f(x)=—f(x)或f(—x)=f(x)是定義域上的恒等式。(奇偶性是函數定義域上的整體性質)。
2、奇偶函數的定義是判斷函數奇偶性的主要依據。為了便于判斷函數的奇偶性,有時需要將函數化簡或應用定義的等價形式:
注意如下結論的運用:
(1)不論f(x)是奇函數還是偶函數,f(|x|)總是偶函數;
(2)f(x)、g(x)分別是定義域D1、D2上的奇函數,那么在D1∩D2上,f(x)+g(x)是奇函數,f(x)·g(x)是偶函數,類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
(3)奇偶函數的復合函數的奇偶性通常是偶函數;
(4)奇函數的導函數是偶函數,偶函數的導函數是奇函數。
3、有關奇偶性的幾個性質及結論
(1)一個函數為奇函數的充要條件是它的圖象關于原點對稱;一個函數為偶函數的充要條件是它的圖象關于y軸對稱。
(2)如要函數的定義域關于原點對稱且函數值恒為零,那么它既是奇函數又是偶函數。
(3)若奇函數f(x)在x=0處有意義,則f(0)=0成立。
(4)若f(x)是具有奇偶性的區間單調函數,則奇(偶)函數在正負對稱區間上的單調性是相同(反)的。
(5)若f(x)的定義域關于原點對稱,則F(x)=f(x)+f(—x)是偶函數,G(x)=f(x)—f(—x)是奇函數。
(6)奇偶性的推廣
函數y=f(x)對定義域內的任一x都有f(a+x)=f(a—x),則y=f(x)的圖象關于直線x=a對稱,即y=f(a+x)為偶函數。函數y=f(x)對定義域內的任—x都有f(a+x)=—f(a—x),則y=f(x)的圖象關于點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數。
(五)、函數的單調性
1、單調函數
對于函數f(x)定義在某區間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調遞增(或遞減);增函數或減函數統稱為單調函數。
對于函數單調性的定義的理解,要注意以下三點:
(1)單調性是與“區間”緊密相關的概念。一個函數在不同的區間上可以有不同的單調性。
(2)單調性是函數在某一區間上的“整體”性質,因此定義中的x1,x2具有任意性,不能用特殊值代替。
(3)單調區間是定義域的子集,討論單調性必須在定義域范圍內。
(4)注意定義的兩種等價形式:
設x1、x2∈[a,b],那么:
①在[a、b]上是增函數;
在[a、b]上是減函數。
②在[a、b]上是增函數。
在[a、b]上是減函數。
需要指出的是:①的幾何意義是:增(減)函數圖象上任意兩點(x1,f(x1))、(x2,f(x2))連線的斜率都大于(或小于)零。
(5)由于定義都是充要性命題,因此由f(x)是增(減)函數,且(或x1>x2),這說明單調性使得自變量間的不等關系和函數值之間的不等關系可以“正逆互推”。
5、復合函數y=f[g(x)]的單調性
若u=g(x)在區間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則復合函數y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減。簡稱“同增、異減”。
在研究函數的單調性時,常需要先將函數化簡,轉化為討論一些熟知函數的單調性。因此,掌握并熟記一次函數、二次函數、指數函數、對數函數的單調性,將大大縮短我們的判斷過程。
6、證明函數的單調性的方法
(1)依定義進行證明。其步驟為:
①任取x1、x2∈M且x1(或<)f(x2);
②根據定義,得出結論。
(2)設函數y=f(x)在某區間內可導。
如果f′(x)>0,則f(x)為增函數;如果f′(x)<0,則f(x)為減函數。
(六)、函數的圖象
函數的圖象是函數的直觀體現,應加強對作圖、識圖、用圖能力的培養,培養用數形結合的思想方法解決問題的意識。
求作圖象的函數表達式
與f(x)的關系
由f(x)的圖象需經過的變換
y=f(x)±b(b>0)
沿y軸向平移b個單位
y=f(x±a)(a>0)
沿x軸向平移a個單位
y=—f(x)
作關于x軸的對稱圖形
y=f(|x|)
右不動、左右關于y軸對稱
y=|f(x)|
上不動、下沿x軸翻折
y=f—1(x)
作關于直線y=x的對稱圖形
y=f(ax)(a>0)
橫坐標縮短到原來的,縱坐標不變
y=af(x)
縱坐標伸長到原來的|a|倍,橫坐標不變
y=f(—x)
作關于y軸對稱的圖形
【例】定義在實數集上的函數f(x),對任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。
①求證:f(0)=1;
②求證:y=f(x)是偶函數;
③若存在常數c,使求證對任意x∈R,有f(x+c)=—f(x)成立;試問函數f(x)是不是周期函數,如果是,找出它的一個周期;如果不是,請說明理由。
思路分析:我們把沒有給出解析式的函數稱之為抽象函數,解決這類問題一般采用賦值法。
解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1。
②令x=0,則有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),這說明f(x)為偶函數。
③分別用(c>0)替換x、y,有f(x+c)+f(x)=
所以,所以f(x+c)=—f(x)。
兩邊應用中的結論,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),所以f(x)是周期函數,2c就是它的一個周期。
函數知識點總結10
I.定義與定義表達式
一般地,自變量_和因變量y之間存在如下關系:y=a_^2+b_+c
(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為_的二次函數。
二次函數表達式的右邊通常為二次三項式。
II.二次函數的三種表達式
一般式:y=a_^2+b_+c(a,b,c為常數,a≠0)
頂點式:y=a(_-h)^2+k[拋物線的頂點P(h,k)]
交點式:y=a(_-_?)(_-_?)[僅限于與_軸有交點A(_?,0)和B(_?,0)的拋物線]
注:在3種形式的互相轉化中,有如下關系:
h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a
III.二次函數的`圖像
在平面直角坐標系中作出二次函數y=_^2的圖像,可以看出,二次函數的圖像是一條拋物線。
IV.拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線_=-b/2a。
對稱軸與拋物線的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線_=0)
2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在_軸上。
3.二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與_軸交點個數
Δ=b^2-4ac>0時,拋物線與_軸有2個交點。
Δ=b^2-4ac=0時,拋物線與_軸有1個交點。
Δ=b^2-4ac<0時,拋物線與_軸沒有交點。
_的取值是虛數(_=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)
V.二次函數與一元二次方程
特別地,二次函數(以下稱函數)y=a_^2+b_+c,
當y=0時,二次函數為關于_的一元二次方程(以下稱方程),即a_^2+b_+c=0
此時,函數圖像與_軸有無交點即方程有無實數根。函數與_軸交點的橫坐標即為方程的根。
函數知識點總結11
第一、求函數定義域題忽視細節函數的定義域是使函數有意義的自變量的取值范圍,考生想要在考場上準確求出定義域,就要根據函數解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數的定義域。
在求一般函數定義域時,要注意以下幾點:分母不為0;偶次被開放式非負;真數大于0以及0的0次冪無意義。函數的定義域是非空的數集,在解答函數定義域類的題時千萬別忘了這一點。復合函數要注意外層函數的定義域由內層函數的值域決定。
第二、帶絕對值的函數單調性判斷錯誤帶絕對值的函數實質上就是分段函數,判斷分段函數的單調性有兩種方法:第一,在各個段上根據函數的解析式所表示的函數的單調性求出單調區間,然后對各個段上的單調區間進行整合;第二,畫出這個分段函數的圖象,結合函數圖象、性質能夠進行直觀的判斷。函數題離不開函數圖象,而函數圖象反應了函數的所有性質,考生在解答函數題時,要第一時間在腦海中畫出函數圖象,從圖象上分析問題,解決問題。
對于函數不同的單調遞增(減)區間,千萬記住,不要使用并集,指明這幾個區間是該函數的單調遞增(減)區間即可。
第三、求函數奇偶性的常見錯誤求函數奇偶性類的題最常見的錯誤有求錯函數定義域或忽視函數定義域,對函數具有奇偶性的前提條件不清,對分段函數奇偶性判斷方法不當等等。判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域區間關于原點對稱,如果不具備這個條件,函數一定是非奇非偶的函數。在定義域區間關于原點對稱的前提下,再根據奇偶函數的`定義進行判斷。
在用定義進行判斷時,要注意自變量在定義域區間內的任意性。
第四、抽象函數推理不嚴謹很多抽象函數問題都是以抽象出某一類函數的共同“特征”而設計的,在解答此類問題時,考生可以通過類比這類函數中一些具體函數的性質去解決抽象函數。多用特殊賦值法,通過特殊賦可以找到函數的不變性質,這往往是問題的突破口。
抽象函數性質的證明屬于代數推理,和幾何推理證明一樣,考生在作答時要注意推理的嚴謹性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規范。
第五、函數零點定理使用不當若函數y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線,且有f(a)f(b)<0。那么函數y=f(x)在區間(a,b)內有零點,即存在c∈(a,b),使得f(c)=0。這個c也可以是方程f(c)=0的根,稱之為函數的零點定理,分為“變號零點”和“不變號零點”,而對于“不變號零點”,函數的零點定理是“無能為力”的,在解決函數的零點時,考生需格外注意這類問題。
第六、混淆兩類切線曲線上一點處的切線是指以該點為切點的曲線的切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。
因此,考生在求解曲線的切線問題時,首先要區分是什么類型的切線。
第七、混淆導數與單調性的關系一個函數在某個區間上是增函數的這類題型,如果考生認為函數的導函數在此區間上恒大于0,很容易就會出錯。
解答函數的單調性與其導函數的關系時一定要注意,一個函數的導函數在某個區間上單調遞增(減)的充要條件是這個函數的導函數在此區間上恒大(小)于等于0,且導函數在此區間的任意子區間上都不恒為零。
第八、導數與極值關系不清考生在使用導數求函數極值類問題時,容易出現的錯誤就是求出使導函數等于0的點,卻沒有對這些點左右兩側導函數的符號進行判斷,誤以為使導函數等于0的點就是函數的極值點,往往就會出錯,出錯原因就是考生對導數與極值關系沒搞清楚。可導函數在一個點處的導函數值為零只是這個函數在此點處取到極值的必要條件,小編在此提醒廣大考生,在使用導數求函數極值時,一定要對極值點進行仔細檢查。
函數知識點總結12
1、定義與定義表達式
一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c
(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a
二次函數表達式的右邊通常為二次三項式。
2、二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k [拋物線的頂點p(h,k)]
交點式:y=a(x-x)(x-x ) [僅限于與x軸有交點a(x,0)和b(x,0)的拋物線]
注:在3種形式的互相轉化中,有如下關系:
h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a
3、二次函數的圖像
在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。
4、拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線x = -b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點p。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點p,坐標為:p ( -b/2a,(4ac-b^2)/4a )當-b/2a=0時,p在y軸上;當δ= b^2-4ac=0時,p在x軸上。
3.二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數
δ= b^2-4ac>0時,拋物線與x軸有2個交點。
δ= b^2-4ac=0時,拋物線與x軸有1個交點。
δ= b^2-4ac
5、二次函數與一元二次方程
特別地,二次函數(以下稱函數)y=ax^2+bx+c,
當y=0時,二次函數為關于x的一元二次方程(以下稱方程),即ax^2+bx+c=0
此時,函數圖像與x軸有無交點即方程有無實數根。函數與x軸交點的橫坐標即為方程的根。
1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸:
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2 +k的圖象;
當h>0,k
當h0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的'圖象;
當h
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x ≤ -b/2a時,y隨x的增大而減小;當x ≥ -b/2a時,y隨x的增大而增大.若a
4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交于兩點a(x,0)和b(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離ab=|x-x|
當△=0.圖象與x軸只有一個交點;
當△0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a
5.拋物線y=ax^2+bx+c的最值:如果a>0(a
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值
6.用待定系數法求二次函數的解析式
(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0).
7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.
函數知識點總結13
倍角公式
二倍角公式
正弦形式:sin2α=2sinαcosα
正切形式:tan2α=2tanα/(1-tan^2(α))
余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
四倍角公式
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
半角公式
正弦
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
余弦
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
正切
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
積化和差
sina*cosb=[sin(a+b)+sin(a-b)]/2
cosa*sinb=[sin(a+b)-sin(a-b)]/2
cosa*cosb=[cos(a+b)+cos(a-b)]/2
sina*sinb=[cos(a-b)-cos(a+b)]/2
和差化積
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]
sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]
cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
誘導公式
任意角α與-α的三角函數值之間的關系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
設α為任意角,終邊相同的角的同一三角函數的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
π/2±α及3π/2±α與α的三角函數值之間的關系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
拓展閱讀:三角函數常用知識點
1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。
2、在Rt△ABC中,∠C為直角,則∠A的銳角三角函數為(∠A可換成∠B)
3、任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。
4、任意銳角的正切值等于它的余角的.余切值;任意銳角的余切值等于它的余角的正切值。
5、正弦、余弦的增減性:當0°≤α≤90°時,sinα隨α的增大而增大,cosα隨α的增大而減小。
6、正切、余切的增減性:當0°<α<90°時,tanα隨α的增大而增大,cotα隨α的增大而減小。
函數知識點總結14
一、函數的概念與表示
1、映射
(1)映射:設A、B是兩個集合,如果按照某種映射法則f,對于集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。
注意點:(1)對映射定義的理解。(2)判斷一個對應是映射的方法。一對多不是映射,多對一是映射
2、函數
構成函數概念的三要素
①定義域②對應法則③值域
兩個函數是同一個函數的條件:三要素有兩個相同
二、函數的解析式與定義域
1、求函數定義域的主要依據:
(1)分式的分母不為零;
(2)偶次方根的被開方數不小于零,零取零次方沒有意義;
(3)對數函數的真數必須大于零;
(4)指數函數和對數函數的底數必須大于零且不等于1;
三、函數的值域
1求函數值域的方法
①直接法:從自變量x的范圍出發,推出y=f(x)的取值范圍,適合于簡單的復合函數;
②換元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式;
③判別式法:運用方程思想,依據二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;
④分離常數:適合分子分母皆為一次式(x有范圍限制時要畫圖);
⑤單調性法:利用函數的單調性求值域;
⑥圖象法:二次函數必畫草圖求其值域;
⑦利用對號函數
⑧幾何意義法:由數形結合,轉化距離等求值域。主要是含絕對值函數
四.函數的奇偶性
1.定義:設y=f(x),x∈A,如果對于任意∈A,都有,則稱y=f(x)為偶函數。
如果對于任意∈A,都有,則稱y=f(x)為奇
函數。
2.性質:
①y=f(x)是偶函數y=f(x)的圖象關于軸對稱,y=f(x)是奇函數y=f(x)的圖象關于原點對稱,
②若函數f(x)的定義域關于原點對稱,則f(0)=0
③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數的`定義域D1,D2,D1∩D2要關于原點對稱]
3.奇偶性的判斷
①看定義域是否關于原點對稱②看f(x)與f(-x)的關系
五、函數的單調性
1、函數單調性的定義:
2設是定義在M上的函數,若f(x)與g(x)的單調性相反,則在M上是減函數;若f(x)與g(x)的單調性相同,則在M上是增函數。
函數知識點總結15
高一數學第三章函數的應用知識點總結
一、方程的根與函數的零點
1、函數零點的概念:對于函數yf(x)(xD),把使f(x)0成立的實數x叫做函數yf(x)(xD)的零點。
2、函數零點的意義:函數yf(x)的零點就是方程f(x)0實數根,亦即函數
yf(x)的圖象與x軸交點的橫坐標。
即:方程f(x)0有實數根函數yf(x)的圖象與x軸有交點函數yf(x)有零點.
3、函數零點的求法:
1(代數法)求方程f(x)0的實數根;○
2(幾何法)對于不能用求根公式的方程,可以將它與函數yf(x)的圖象○
聯系起來,并利用函數的性質找出零點.
零點存在性定理:如果函數y=f(x)在區間〔a,b〕上的圖象是連續不斷的一條曲線,并且有f(a)f(b)<0,那么,函數y=f(x)在區間(a,b)內有零點,即存在c(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。先判定函數單調性,然后證明是否有f(a)f(b)第三章函數的應用習題
一、選擇題
1.下列函數有2個零點的是()
222y3x10y4x5x10yx3x5y4x4x1A、B、C、D、22.用二分法計算3x3x80在x(1,2)內的根的過程中得:f(1)0,f(1.5)0,
f(1.25)0,則方程的根落在區間()
A、(1,1.5)B、(1.5,2)C、(1,1.25)D、(1.25,1.5)
3.若方程axxa0有兩個解,則實數a的取值范圍是A、(1,)B、(0,1)C、(0,)D、
4.函數f(x)=lnx-2x的零點所在的大致區間是()A.(1,2)B.2,eC.e,3D.e,
5.已知方程x3x10僅有一個正零點,則此零點所在的區間是()
A.(3,4)B.(2,3)C.(1,2)D.(0,1)
6.函數f(x)lnx2x6的零點落在區間()A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)
7.已知函數
fx的圖象是不間斷的,并有如下的對應值表:x1234567fx8735548那么函數在區間(1,6)上的零點至少有()個A.5B.4C.3D.28.方程2x1x5的解所在的區間是A(0,1)B(1,2)C(2,3)D(3,4)
9.方程4x35x60的根所在的區間為A、(3,2)B、(2,1)C、(1,0)D、(0,1)
10.已知f(x)2x22x,則在下列區間中,f(x)0有實數解的是()
)
()
()
((A)(-3,-2)(B)(-1,0)(C)(2,3)(D)(4,5)11.根據表格中的數據,可以判定方程ex-x-2=0的一個根所在的區間為()
xexx+2-10.37101212.72327.394320.095A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12、方程
x12x根的個數為()
A、0B、1C、2D、3二、填空題
13.下列函數:1)y=lgx;2)y2;3)y=x2;4)y=|x|-1;其中有2個零點的函數的序號是。
x214.若方程3x2的實根在區間m,n內,且m,nZ,nm1,
x則mn.
222f(x)(x1)(x2)(x2x3)的零點是15、函數(必須寫全所有的零點)。
擴展閱讀:高中數學必修一第三章函數的應用知識點總結
第三章函數的應用
一、方程的根與函數的零點
1、函數零點的概念:對于函數yf(x)(xD),把使f(x)0成立的實數x叫做函數yf(x)(xD)的零點。
2、函數零點的意義:函數yf(x)的零點就是方程f(x)0實數根,亦即函數
yf(x)的圖象與x軸交點的橫坐標。
即:方程f(x)0有實數根函數yf(x)的圖象與x軸有交點函數yf(x)有零點.
3、函數零點的求法:
1(代數法)求方程f(x)0的實數根;○
2(幾何法)對于不能用求根公式的方程,可以將它與函數yf(x)的圖象聯系起來,○
并利用函數的性質找出零點.
4、基本初等函數的零點:
①正比例函數ykx(k0)僅有一個零點。
k(k0)沒有零點。x③一次函數ykxb(k0)僅有一個零點。
②反比例函數y④二次函數yax2bxc(a0).
(1)△>0,方程ax2bxc0(a0)有兩不等實根,二次函數的圖象與x軸有兩個交點,二次函數有兩個零點.
(2)△=0,方程ax2bxc0(a0)有兩相等實根,二次函數的圖象與x軸有一個交點,二次函數有一個二重零點或二階零點.
(3)△<0,方程ax2bxc0(a0)無實根,二次函數的圖象與x軸無交點,二次函數無零點.
⑤指數函數ya(a0,且a1)沒有零點。⑥對數函數ylogax(a0,且a1)僅有一個零點1.
⑦冪函數yx,當n0時,僅有一個零點0,當n0時,沒有零點。
5、非基本初等函數(不可直接求出零點的較復雜的函數),函數先把fx轉化成,這另fx0,再把復雜的函數拆分成兩個我們常見的函數y1,y2(基本初等函數)個函數圖像的交點個數就是函數fx零點的個數。
6、選擇題判斷區間a,b上是否含有零點,只需滿足fafb0。Eg:試判斷方程xx2x10在區間[0,2]內是否有實數解?并說明理由。
1
42x7、確定零點在某區間a,b個數是唯一的條件是:①fx在區間上連續,且fafb0②在區間a,b上單調。Eg:求函數f(x)2xlg(x1)2的零點個數。
8、函數零點的性質:
從“數”的角度看:即是使f(x)0的實數;
從“形”的角度看:即是函數f(x)的圖象與x軸交點的橫坐標;
若函數f(x)的圖象在xx0處與x軸相切,則零點x0通常稱為不變號零點;若函數f(x)的圖象在xx0處與x軸相交,則零點x0通常稱為變號零點.
Eg:一元二次方程根的分布討論
一元二次方程根的分布的基本類型
2axbxc0(a0)的兩實根為x1,x2,且x1x2.設一元二次方程
k為常數,則一元二次方程根的k分布(即x1,x2相對于k的位置)或根在區間上的
分布主要有以下基本類型:
表一:(兩根與0的大小比較)
分布情況兩個負根即兩根都小于0兩個正根即兩根都大于0一正根一負根即一個根小于0,一個大于0x10,x20x10,x20x10x2a0)大致圖象(得出的結論0b02af000b02af00f00
大致圖象(a0)得出的.結論0b02af000b02aaf000b02af000b02aaf00f00(不綜討合論結a論)
af00表二:(兩根與k的大小比較)
分布情況兩根都小于k即兩根都大于k即一個根小于k,一個大于k即x1k,x2kx1k,x2kx1kx2a0)大致圖象(kkk得出的結論0bk2afk00bk2afk0fk0大致圖象(a0)得出的結論0bk2afk00bk2aafk00bk2afk00bk2aafk0fk0(不綜討合論結a論)a0)afk0分布情況大致圖象(得出的結論表三:(根在區間上的分布)
兩根都在m,n內兩根有且僅有一根在m,n一根在m,n內,另一根在p,q內(有兩種情況,只畫了一種)內,mnpq0fm0fn0bmn2afmfn0fm0fn0fmfn0fp0fq0fpfq0或
大致圖象(a0)得出的結論0fm0fn0bmn2a綜合結論fmfn0fm0fn0fmfn0fp0fq0fpfq0或fmfn0fpfq0(a不)討論
fmfn0Eg:(1)關于x的方程x22(m3)x2m140有兩個實根,且一個大于1,一個小于1,求m的取值范圍?
(2)關于x的方程x2(m3)x2m140有兩實根在[0,4]內,求m的取值范圍?
2(3)關于x的方程mx2(m3)x2m140有兩個實根,且一個大于4,一個小于4,求m的取值范圍?
9、二分法的定義
對于在區間[a,b]上連續不斷,且滿足f(a)f(b)0的函數
yf(x),通過不斷地把函數f(x)的零點所在的區間一分為二,
使區間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法.
10、給定精確度ε,用二分法求函數f(x)零點近似值的步驟:(1)確定區間[a,b],驗證f(a)f(b)0,給定精度;(2)求區間(a,b)的中點x1;(3)計算f(x1):
①若f(x1)=0,則x1就是函數的零點;
②若f(a)f(x1)14、根據散點圖設想比較接近的可能的函數模型:一次函數模型:f(x)kxb(k0);二次函數模型:g(x)ax2bxc(a0);冪函數模型:h(x)axb(a0);
指數函數模型:l(x)abxc(a0,b>0,b1)
利用待定系數法求出各解析式,并對各模型進行分析評價,選出合適的函數模型
【函數知識點總結】相關文章:
函數知識點總結02-10
[精選]函數知識點03-01
函數知識點03-01
關于高中函數的知識點總結03-30
初中數學函數知識點總結04-08
函數知識點總結(20篇)07-20
函數知識點總結20篇04-20
函數知識點(合集)03-02
函數知識點總結(匯編15篇)02-10
數學高一函數知識點總結11-03