高一數學《同角三角函數基本關系》說課稿
在教學工作者實際的教學活動中,時常要開展說課稿準備工作,是說課取得成功的前提。我們應該怎么寫說課稿呢?下面是小編精心整理的高一數學《同角三角函數基本關系》說課稿,僅供參考,希望能夠幫助到大家。
一、教材分析
1、教材的地位與作用:《同角三角函數的基本關系》是學習三角函數定義后安排的一節繼續深入學習的內容,是求三角函數值,化簡三角函數式,證明三角恒等式的基本工具,是整個三角函數的基礎,起承上啟下的作用,同時,它體現的數學思想方法在整個中學學習中起重要作用。
2、教學目標的確定及依據
A、知識與技能目標:通過觀察猜想出兩個公式,運用數形結合的思想讓學生掌握公式的推導過程,理解同角三角函數的基本關系式,掌握基本關系式在兩個方面的應用:1)已知一個角的一個三角函數值能求這個角的其他三角函數值;2)證明簡單的三角恒等式。
B、過程與方法:培養學生觀察——猜想——證明的科學思維方式;通過公式的推導過程培養學生用舊知識解決新問題的思想;通過求值、證明來培養學生邏輯推理能力;通過例題與練習提高學生動手能力、分析問題解決問題的能力以及其知識遷移能力。
C、情感、態度與價值觀:經歷數學研究的過程,體驗探索的樂趣,增強學習數學的興趣。
3、教學重點和難點
重點:同角三角函數基本關系式的推導及應用。
難點:同角三角函數函數基本關系在解題中的靈活選取及使用公式時由函數值正、負號的選取而導致的角的范圍的討論。
二、學情分析:
學生剛開始接觸三角函數的內容,學習了任意角的三角函數,對這一方面的內容既感到新鮮又感到陌生,很有好奇心,躍躍欲試,學習熱情高漲。
三、教法分析與學法分析:
1、教法分析:采取誘思探究性教學方法,在教學中提出問題,創設情景引導學生主動觀察、思考、類比、討論、總結、證明,讓學生做學習的主人,在主動探究中汲取知識,提高能力。
2、學法分析:從學生原有的知識和能力出發,在教師的帶領下,通過合作交流,共同探索,逐步解決問題.數學學習必須注重概念、原理、公式、法則的形成過程,突出數學本質。
四、教學過程設計
例1、設計意圖:已知一個角的某一個三角函數值,便可運用基本關系式求出其它三角函數值。在求值中,確定角的.終邊位置是關鍵和必要的。有時,由于角的終邊位置的不確定,因此解的情況不止一種。本題主要利用的數學解題思想是:分類討論
例2、設計意圖:(1)分子、分母是正余弦的一次(或二次)齊次式,注意所求值式的分子、分母均為一次齊次式,把分子、分母同除以,將分子、分母轉化為的代數式;還可以利用商數關系解決。
(2)“化1法”,可利用平方關系,將分子、分母都變為二次齊次式,再利用商數關系化歸為的分式求值;
五、教學反思:
如此設計教學過程,既復習了上一節的內容,又充分利用舊知識帶出新知識,讓學生明白到數學的知識是相互聯系的,所以每一節內容都應該把它牢固掌握;在公式的推導中,教師是用創設問題的形式引導學生去發現關系式,多讓學生動手去計算,體現了"教師為引導,學生為主體,體驗為紅線,探索得材料,研究獲本質,思維促發展"的教學思想。通過兩種不同的例題的對比,讓學生能夠明白到關系式中的開方,是需要考慮正負號,而正負號是與角的象限有關,角的象限題目可以直接給出來,但有時是需要已知條件來推出角可能所在的象限,通過分析,把本節課的教學難點解決了。由于課堂在完成例題及變式時要給予學生充分的時間思考與嘗試,故對學生的檢測只能安排在課后的作業中,作業可以檢測學生對本節課內容掌握的情況,能否靈活運用知識進行合理的遷移,可以發現學生在解題中存在的問題,下節課教師再根據學生完成的情況加以評講,并設計相應的訓練題,使學生的認識再上一個臺階。
【高一數學《同角三角函數基本關系》說課稿】相關文章:
高一數學《同角三角函數基本關系》說課稿08-30
同角三角函數的基本關系說課稿04-01
《同角三角函數的基本關系》說課稿04-02
《同角三角函數的基本關系》說課稿范文02-21
同角三角函數的基本關系的教學及反思02-14
同角三角函數的基本關系的教學反思01-20
同角三角函數的基本關系教學反思11-18
同角三角函數的基本關系教學反思07-17
同角三角函數的基本關系式總結10-12