教學內容:教科書第58頁例4,練習九。
教學目標:
1.使學生經歷積的變化規律的發現過程,感受發現數學中的規律是一件十分有趣的事情。
2.嘗試用簡潔的語言表達積的變化規律,培養初步的概括和表達能力。
3.初步獲得探索規律的一般方法和經驗,發展學生的推理能力。
教學重點:掌握并能運用積的變化規律。
教學難點:探究積的變化規律。
教、學具準備:多媒體課件
教學過程:
一、創設情景,提出問題
屏幕顯示:為響應"中央關心西藏,全國支持西藏"號召,武漢市長征小學與西藏
希望小學開展"手拉手,獻愛心"活動,全校學生們捐出自己的零花錢,為西藏小朋友購
買一些圖書和學習用品。請你們幫忙算一算,一盒美術顏料6元,買2盒花多少錢?
20盒呢?200盒呢?
根據學生的回答,教師板書:6×2=12(元)
6×20=120(元)
6×200=1200(元)
二、研究“兩數相乘,其中一個因數變化,它們的積如何變化的規律”。
1.研究問題。
(1)兩數相乘,其中一個因數擴大若干倍時,積怎么變化。
觀察、并想一想發現了什么,并把發現寫出來。
6×2=12
6×20=120
6×200=1200
根據8×50=400直接寫出積
16×50=
32×50=
概括發現的規律。
①組織小組交流,讓每一個學生先把在第⑴組算式中獨立發現的規律說給自己的同伴聽。學生也許是就題說題,如,第一組算式,發現的規律是:20是2的10倍,120也是12的10倍;第二組算式,發現的規律是:16是8的2倍,800也是400的2倍。
②組織全班交流。在小組交流基礎上,引導學生根據第(1)組算式中積隨因數變化的情況,將發現的上述規律用一句話概括出來:“兩數相乘,一個因數不變,另一個因數乘幾 積也乘幾。”
(2)兩數相乘,其中一個因數縮小若干倍時,積又怎么變化。
請學生完成下列兩組計算,想一想又發現了什么?把發現也寫出來。
800×4=( )
80×4=( )
8×4=( )
根據8×50=400直接寫出積
8×25=
2×50=
概括發現的規律。
引導學生討論第(2)組算式中積隨因數變化的情況,與第(1)組算式的討論過程相同,最后引導學生概括:“兩數相乘,一個因數不變,另一個因數除以幾 (0除外),積也除以幾。
2.整體概括規律。
問:“誰能用一句話將發現的兩條規律概括為一條?”
引導學生將發現的兩條規律概括為一條,并用簡明的話語表示出來:兩數相乘,一個因數不變,另一個因數乘(或除以《0除外》)幾 ,積也乘(或除以)幾。
板書課題《積的變化規律》
3.驗證規律。
(1)先用積的變化規律填空,再用筆算或計算器驗算。
26×48=1248 17×12=204
26×24=( ) 17×24=( )
26×12=( ) 17×36=( )
(2)自己舉例說明積的變化規律。每位學生各寫兩組算式,一組3個,展現積分別隨一個因數擴大、縮小的變化情況。
4.應用規律。
練習九第1~2題。
三、全課總結
師 :在這節數學課上,你們有什么收獲嗎?
生1:我們找到了積的變化規律:一個因數不變,另一個因數乘(或除以)幾 ,積也乘(或除以)幾。
生2:我會用積的變化規律解決生活中的問題,很方便。
生3;我還學會了研究規律的方法。
……
師:大家用自己智慧的雙眼,聰明的大腦發現并運用了乘法規律,老師真為你們高興。
板書:
積的變化規律
兩數相乘,一個因數不變,另一個因數乘(或除以《0除外》)幾 ,積也乘(或除以)幾。