《一元一次方程的應用》說課稿范文
作為一位優秀的人民教師,編寫說課稿是必不可少的,說課稿有利于教學水平的提高,有助于教研活動的開展。那么應當如何寫說課稿呢?以下是小編整理的《一元一次方程的應用》說課稿范文,歡迎閱讀與收藏。
《一元一次方程的應用》說課稿1
一、教學分析:
本節課設計簡析:本節課內容是列方程解應用題,主要是小學解應用題和中學解應用題的銜接,讓學生感受數學與現實生活息息相關,并且體驗數學的趣味性,提高學習數學的積極性。
二、教學目標:
(一)知識目標:
1、通過身邊的故事,引導學生對生活中的問題進行探討和研究,學會用方程的思維解決問題。
2、借助找關鍵句或關鍵詞、畫線段圖或示意圖等方法,引導學生正確找出題中的等量關系,列出方程。
(二)能力目標:
1、通過小組合作學習活動,培養學生的合作意識和語言表達能力。
2、培養學生的觀察、分析能力以及用方程思維解決問題的能力。
(三)情感目標:
1、使學生在討論、交流的學習過程中獲得積極的情感體驗,探索意識、創新意識得到有效發展。
2、在分析應用題的過程中,培養學生勇于探索、自主學習的精神。感受到生活中處處存在數學,體驗數學的趣味性
教學重點、難點:
能分析題意,正確找出題中的等量關系,列出方程解決問題。
教學過程:
一、溫故:
分別算出下列繩子的總長度
【設計意圖:為下面的例題做好鋪墊】
二、新課引入:
我今天給大家講一個故事,故事的主人翁是丟番圖,希臘數學家丟番圖(公元3~4世紀)的墓碑上記載著:
“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,兩頰長起了細細的胡須;他結了婚,又度過了一生的七分之一:再過五年,他有了兒子,感到很幸福;可是,兒子只活了他父親全部生命的一半;兒子死后,他又在極度的悲傷中度過了四年,也與世長辭了。” 根據以上的信息,請你計算出: 丟番圖死時多少歲;
或者根據丟番圖的年齡能被6,12,2,7整除,可知這個年齡是6,12,2,7的倍數,所以他的年齡為84,168??但是根據迄今被《吉尼斯世界記錄》認可的世界上壽命最長的人是法國的讓—卡爾門特,他在1997年8月4日去世時享年122歲。所以丟番圖的年齡為84歲。
【設計意圖:這個題目有一定的難度和趣味性,可以在開課時吸引全班學生的注意力,同時這個題目可以用方程解法和算式解法,甚至還可以用以前學過的倍數來解決,解題方法多樣性,可以鍛煉學生的思維,也可以做到小學用算式和中學列方程解應用題的銜接。通過這個題目對比兩種解法可以看出:算術解法是把未知量置于特殊地位,設法用已知量組成的混合運算式表示出來(在條件較復雜時,列出這樣的式子往往比較困難);代數解法是把未知量與已知量同等對待(使未知量在分析問題的過程中也能發揮作用),找出各量之間的等量關系,建立方程。】
總結:列方程解應用題的一般步驟:
(1)“審”:審清題意;
(2)“設”:設未知數并把有關的量用含有未知數的代數式表示;
(3)“列”:根據等量關系列出方程;
(4)“解”:解方程;
(5)“答”:檢驗作答。
三、鞏固練習,提高能力
1、一只天鵝在天空中飛翔時遇到了一群天鵝,它向群鵝問好:“你們好啊,100只天鵝。”群鵝回答說:“我們不是100只,但是如果以我們這么多,再加上這么多,在加上我們的一半,再加上我們一半的一半,你也加進來,那么我們就是100只了,”問天上飛的群鵝有多少只?
解:設群鵝有x只。 【設計意圖:這個題目和例題思路差不多,可以檢驗學生是否聽懂例題,語言生活化,可以引起學生的興趣。此題可以利用畫線段來分析題意,列出方程。】
1、現在兒子的年齡是8歲,父親的年齡是兒子年齡的4倍,請問多少年后父親的年齡是兒子年齡的3倍。
解:設x年后父親的'年齡是兒子年齡的3倍
兒子 爸爸
現在的年齡 8 8×4
X年后的年齡 8+X 8×4+X 然后根據題意列出方程解答。
【設計意圖:這個題目用算式解題較容易出錯,但是用方程解很簡單,讓學生體驗用方程成功解應用題的成就感】
3、我的地盤,我做主!
編題目:根據方程X+(X+8)= 40,編一道應用題。
【設計理念:學生具備了讀懂題目,列出方程的能力,那么能不能根據一個方程自己編一道應用題呢?這是能力的提升!學生編完題后互相檢驗,又再一次鍛煉了學生分析題意的能力】
四、小結:
今天你有什么收獲?體驗到方程有時候給我們解應用題帶來很大的方便。
思考題:1、有一群鴿子和一些鴿籠,如果每個鴿籠住6只鴿子,則剩余3只鴿子無鴿籠可住,如果再飛來5只鴿子,每個鴿籠剛好住8只鴿子,原有多少個鴿籠?多少只鴿子?
【設計理念:經典問題如何用方程解決】
2、有甲、乙兩個牧童,甲對乙說:“把你的羊給我一只,我的羊數就是你的羊數的2倍。”乙回答說:“最好還是把你的羊給我一只,我們的羊數就相等了,”兩個牧童各有多少羊?
【設計意圖:這個題目看起來比較簡單,學生很容易說出答案4、6或者1,3等,但是經過列式計算發現是錯的,這個題目可能有一些學生會用二元的方程解題,對用這種方法的同學提出表揚】
【設計理念:練習的設計體現了層次性和趣味性。同時也適合不同程度的學生,讓學生在不同層次、不同類型的題目中得到鍛煉,提高解題能力。同時讓學生感受用方程的方法解決問題的樂趣,拓展學生的思維。】
《一元一次方程的應用》說課稿2
學 習目標:
1、進一步經歷運用方程解決實際問題的過程。
2、提高學生找等量關系列方程的能力。
3、培養學生的抽象、概括、分析和解決問題的能力。
4、學會用數學的眼光去看待、分析現實生活中的情景。
重點:
1、如何從實際問題中尋找等量關系建立方程,解決問題后如何驗證它的合理性。
2、 解決打折銷售中的有關利潤、成本價、賣價之間的相關的現實問題。
難點:
如何從實際問題中尋找等量關系建立方程。
學習指導:
一、知識準備
1、通過社會調查,親歷打折銷售這一現實情境,了解打折銷售中的成本價、賣價和利潤之間的關系。進而能根據現實情境提出數學問題。
2、談一談:
請舉例說明打折、利潤、利潤率、提價及削價的含義分別是什么?
3、算一算:
(1)原價100元的商品,打8折后價格為 元;
(2)原價100元的商品,提價40%后的價格為 元;
(3)進價100元的商品,以150元賣出,利潤是 元。
二、學習新課
一)思考:
1、把下面的“折扣”數改寫成百分數。九折 八八折 七五折
2、你是怎樣理解某種商品打“八折”出售的?
二)問題:
1、 說說“打折銷售”中自己有過的親身經歷。
2、假設你是一個商店老板,你的追求是什么?
3、你是怎樣理解商品的利潤?
三) 新知探討
1 、你認為商品的標價、折數與商品的賣價之間有怎樣的關系?
2、結合實際,說說你從打折銷售中可以獲得哪些數學問題?
(1)某商店出售一種錄音機,原價430元,現在打九折出售,比原價便宜多少錢?
(2)一種畫冊原價每本16元,現在按每本11。2元出售。這種畫冊按原價打了幾折?
(3)、為慶祝“六一兒童節”,某書店所有兒童讀物一律八折優惠,小明花了24元買了一套讀物,請問這套讀物原價是多少?
(4)一家商店將某種服裝按成本價提高40%后賣出,已知每件服裝的成本價是125元,每件服裝獲利多少?
2、例題:一家商店將某種服裝按成本價提高40%后標價,又以8 折優惠賣出,結果每件仍獲利15元,這種服裝每件的成本是多少元?
如果設每件服裝的成本價為x元,根據題意,
(1)每件服裝的標價為:( )
(2)每件服裝的實際售價為:( )
(3)每件服裝的利潤為:( )
(4)列出方程,并解答:
四)回顧與反思
通過這節課的學習,你最大的收獲是什么?在調查中你還遇到哪些難解的問題,看看大家是不是可以給你解答?
【《一元一次方程的應用》說課稿范文】相關文章:
表單的應用說課稿11-03
導數的應用專題說課稿11-04
有余數除法的應用說課稿11-05
電磁感應規律的應用說課稿11-02
人教版初中數學一元一次方程說課稿04-07
動量守恒定律的應用說課稿04-17
百分數的應用說課稿11-08
全球定位系統及其應用說課稿11-03