亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

高一數學必修一知識點必背難點總結

時間:2021-08-03 18:10:21 總結 我要投稿

高一數學必修一知識點必背難點總結5篇

  總結是對某一階段的工作、學習或思想中的經驗或情況進行分析研究的書面材料,他能夠提升我們的書面表達能力,因此我們需要回頭歸納,寫一份總結了。總結怎么寫才能發揮它的作用呢?下面是小編精心整理的高一數學必修一知識點必背難點總結5篇,僅供參考,大家一起來看看吧。

高一數學必修一知識點必背難點總結5篇

高一數學必修一知識點必背難點總結5篇1

  集合間的基本關系

  1.“包含”關系—子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.“相等”關系(5≥5,且5≤5,則5=5)

  實例:設 A={x|x2-1=0} B={-1,1} “元素相同”

  結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

  A?① 任何一個集合是它本身的子集。A

  B那就說集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A

  C?C ,那么 A?B, B?③如果 A

  A 那么A=B?B 同時 B?④ 如果A

  3. 不含任何元素的集合叫做空集,記為Φ

  規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  集合的運算

  1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

  記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

  2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

  3、交集與并集的性質:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

  4、全集與補集

  (1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)

  A}?S且 x? x?記作: CSA 即 CSA ={x

  (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。

  (3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

高一數學必修一知識點必背難點總結5篇2

  I.定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c

  (a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

  則稱y為x的二次函數。

  二次函數表達式的右邊通常為二次三項式。

  II.二次函數的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

  頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

  交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

  注:在3種形式的互相轉化中,有如下關系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函數的圖像

  在平面直角坐標系中作出二次函數y=x^2的圖像,可以看出,二次函數的圖像是一條拋物線。

  IV.拋物線的性質

  1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點為拋物線的頂點P。

  特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個頂點P,坐標為

  P(-b/2a,(4ac-b^2)/4a)

  當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

  3.二次項系數a決定拋物線的開口方向和大小。

  當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

高一數學必修一知識點必背難點總結5篇3

  1.函數的奇偶性

  (1)若f(x)是偶函數,那么f(x)=f(-x);

  (2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);

  (3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

  (4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;

  (5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性;

  2.復合函數的有關問題

  (1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。

  (2)復合函數的單調性由“同增異減”判定;

  3.函數圖像(或方程曲線的對稱性)

  (1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;

  (2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

  (3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

  (5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱,高中數學;

  (6)函數y=f(x-a)與y=f(b-x)的圖像關于直線x=對稱;

高一數學必修一知識點必背難點總結5篇4

  【基本初等函數】

  一、指數函數

  (一)指數與指數冪的運算

  1.根式的概念:一般地,如果,那么叫做的.次方根(nthroot),其中>1,且∈.

  當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).

  當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。

  注意:當是奇數時,當是偶數時,

  2.分數指數冪

  正數的分數指數冪的意義,規定:

  0的正分數指數冪等于0,0的負分數指數冪沒有意義

  指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

  3.實數指數冪的運算性質

  (二)指數函數及其性質

  1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.

  注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

  2、指數函數的圖象和性質

高一數學必修一知識點必背難點總結5篇5

  1.二次函數y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

  解析式

  頂點坐標

  對稱軸

  y=ax^2

  (0,0)

  x=0

  y=a(x-h)^2

  (h,0)

  x=h

  y=a(x-h)^2+k

  (h,k)

  x=h

  y=ax^2+bx+c

  (-b/2a,[4ac-b^2]/4a)

  x=-b/2a

  當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

  當h<0時,則向左平行移動|h|個單位得到.

  當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

  當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

  當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

  當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;

  因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

  2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).

  3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.

  4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

  (1)圖象與y軸一定相交,交點坐標為(0,c);

  (2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的兩根.這兩點間的距離AB=|x?-x?|

  當△=0.圖象與x軸只有一個交點;

  當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.

  5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

  頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.

  6.用待定系數法求二次函數的解析式

  (1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:

  y=ax^2+bx+c(a≠0).

  (2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).

  (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

  7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.

【高一數學必修一知識點必背難點總結5篇】相關文章:

高一數學必修一知識點總結08-09

高一英語必背作文12-01

高一必背英語作文簡短09-02

高一政治必修一知識點總結12-12

高一物理必修一知識點總結08-30

高一語文必修一知識點總結01-12

高一語文必修一必寫作文08-28

高一地理必修一知識點總結10-11

高一地理必修一知識點總結12-12

高考生物必背知識點11-10