高中數學知識點總結[精選]
總結是對過去一定時期的工作、學習或思想情況進行回顧、分析,并做出客觀評價的書面材料,它可以提升我們發現問題的能力,因此好好準備一份總結吧。如何把總結做到重點突出呢?下面是小編整理的高中數學知識點總結,歡迎大家借鑒與參考,希望對大家有所幫助。
1.利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恒f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恒f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恒f(x)0,則函數yf(x)在區間(a,b)上為常數函數.
2.利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間.
3.反過來,也可以利用導數由函數的單調性解決相關問題(如確定參數的取值范圍):設函數yf(x)在區間(a,b)內可導,(1)如果函數yf(x)在區間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區間);
(2)如果函數yf(x)在區間(a,b)上為減函數,則f(x)0(其中使f(x)0的"x值不構成區間);
(3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恒成立.
4.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數軸和文氏圖進行求解。
5.在應用條件時,易A忽略是空集的情況
6.你會用補集的思想解決有關問題嗎?
7.簡單命題與復合命題有什么區別?四種命題之間的相互關系是什么?如何判斷充分與必要條件?
8.你知道“否命題”與“命題的否定形式”的區別。
9.求解與函數有關的問題易忽略定義域優先的原則。
10.判斷函數奇偶性時,易忽略檢驗函數定義域是否關于原點對稱。
11.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域。
12.原函數在區間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調。例如:。
13.你熟練地掌握了函數單調性的證明方法嗎?定義法(取值, 作差, 判正負)和導數法
14. 求函數單調性時,易錯誤地在多個單調區間之間添加符號“∪”和“或”;單調區間不能用集合或不等式表示。
15.求函數的值域必須先求函數的定義域。
16.如何應用函數的單調性與奇偶性解題?
、俦容^函數值的大小;
、诮獬橄蠛瘮挡坏仁;
、矍髤档姆秶(恒成立問題).這幾種基本應用你掌握了嗎?
17.解對數函數問題時,你注意到真數與底數的限制條件了嗎?
(真數大于零,底數大于零且不等于1)字母底數還需討論
18.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?
19.用換元法解題時易忽略換元前后的等價性,易忽略參數的范圍。
20.“實系數一元二次方程有實數解”轉化時,你是否注意到:當時,“方程有解”不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?
利用導數求函數單調性的基本方法:設函數yf(x)在區間(a,b)內可導,(1)如果恒f(x)0,則函數yf(x)在區間(a,b)上為增函數;(2)如果恒f(x)0,則函數yf(x)在區間(a,b)上為減函數;(3)如果恒f(x)0,則函數yf(x)在區間(a,b)上為常數函數.
利用導數求函數單調性的基本步驟:①求函數yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間.
反過來,也可以利用導數由函數的單調性解決相關問題(如確定參數的取值范圍):設函數yf(x)在區間(a,b)內可導,(1)如果函數yf(x)在區間(a,b)上為增函數,則f(x)0(其中使f(x)0的x值不構成區間);
(2)如果函數yf(x)在區間(a,b)上為減函數,則f(x)0(其中使f(x)0的"x值不構成區間);
(3)如果函數yf(x)在區間(a,b)上為常數函數,則f(x)0恒成立.
【高中數學知識點總結】相關文章:
高中數學的知識點總結04-10
高中數學知識點的總結05-24
高中數學知識點的總結03-13
高中數學基本的知識點總結09-28
高中數學知識點總結05-15
高中數學知識點的總結12-19
高中數學復數知識點總結04-16
高中數學全部知識點總結02-20
高中數學導數知識點總結02-11
高中數學知識點總結09-22