亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

初中數學知識點總結

時間:2025-05-22 07:50:43 知識點總結 我要投稿

初中數學知識點總結錦集15篇

  總結是把一定階段內的有關情況分析研究,做出有指導性結論的書面材料,它可以幫助我們總結以往思想,發揚成績,讓我們好好寫一份總結吧。總結怎么寫才是正確的呢?以下是小編精心整理的初中數學知識點總結,供大家參考借鑒,希望可以幫助到有需要的朋友。

初中數學知識點總結錦集15篇

初中數學知識點總結1

  1、相交線

  對頂角相等。

  過一點有且只有一條直線與已知直線垂直。

  連接直線外一點與直線上各點的所有線段中,垂線段最短(簡單說成:垂線段最短)。

  2、平行線

  經過直線外一點,有且只有一條直線與這條直線平行。

  如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。

  直線平行的.條件:

  兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。

  兩條直線被第三條直線所截,如果內錯角相等,那么兩直線平行。

  兩條直線被第三條直線所截,如果同旁內角互補,那么兩直線平行。

  3、平行線的性質

  兩條平行線被第三條直線所截,同位角相等。

  兩條平行線被第三條直線所截,內錯角相等。

  兩條平行線被第三條直線所截,同旁內角互補。

  判斷一件事情的語句,叫做命題。

初中數學知識點總結2

  一、在創新中培養學生的歸納意?R

  在初中數學教學中,重點是對學生的創新精神和實踐能力的培養,體現出現代素質教育。學生創新能力的培養在學習中占據非常重要的作用,在創新中學生可以鞏固自身所學的知識,使數學知識在自己的頭腦中根深蒂固,各類知識點在學生的頭腦中形成清晰的框架,有助于學生歸納意識的培養。歸納意識的培養,可以減輕學生的學習負擔,提升學生對知識的理解能力。

  初中生在學習數學的環節中,常常會接觸到大量的圖像,在數學學習中,老師應該鼓勵學生大膽創新,在創新環節中完成對知識點的歸納。數學學習并不死板,不僅僅學習教科書上的知識,還應該學習書本以外的知識,從而創新自己的思維。例如在進行函數的學習中,老師可以讓學生繪制函數圖像,對函數進行分類討論,從而掌握遞增函數和遞減函數的定義,在分類討論后,學生結合圖像進行歸納。在數學教學中,老師不僅僅要重視書本上的邏輯內容,而且在把握邏輯內容的基礎上,將圖像和數學知識有機結合起來,使學生可以大膽創新。

  很多學生在數學學習中存在困難,認為數學的學習就是解答大量的難題,他們在大量的題海戰術后不善于歸納,導致數學學習的效率不高。

  二、在交流中歸納知識點

  在數學學習中,如果學生只是自己探究,那么在學習中不會得到靈感。數學學習不僅僅要求學生具有認真的鉆研態度,而且也需要老師幫助學生養成歸納的意識。溝通和交流不僅僅在語言的學習中發揮非常重要的作用,而且在數學學習中同樣非常重要。學生在解答數學問題中,常常會遇到一些問題,學生自己探究會陷入到死胡同中,需要老師和同學的幫助才能進一步完成。

  為了切實在初中數學教學中培養學生的歸納意識,老師可以將班級內的學生分成幾個不同的小組,組內的同學可以通過合作的方式,對知識點進行歸納,在數學的學習中更加變通,將數學這門學科應用到生活中。

  例如,在進行二次函數的學習中,老師可以將學生分成不同的小組,留給學生充足的時間,讓他們互相幫助,在溝通中對知識點進行歸納。學生很快就能得到結論,如果函數有兩個解,那么函數與數軸會有兩個交點,如果方程只有一個解,那么函數與數軸只有一個交點,如果方程沒有解,那么函數與數軸沒有交點。學生通過分組討論的方式得到結論,通過歸納,學生對二次函數知識點的印象非常深刻。

  三、學會正確歸納

  在數學學習中,歸納思想非常重要,數學這門學科的知識非常細碎,是一門系統性很強的'學科。數學知識錯綜復雜,很多學生在學習數學中力不從心,掌握合理的歸納方式,可以切實提升學生的數學成績。初中生的思維還不是特別完善,在進行數學學習環節中,對知識點進行合理的歸納,是每位老師應該采取的方法。如果學生不懂得歸納,那么在數學考試中,學生會將知識點混淆。為了提升學生的歸納能力,老師在課堂上應該將一些容易混淆和容易出現錯誤的習題讓學生總結。

  例如,在學習圓和直線這部分內容中,老師都會將重點內容,圓和圓的位置關系,直線和圓的位置關系進行重點分析。老師可以借助一些參考書目和資料,總結一些相似的題目,讓學生在課堂上解答這些題目,使學生對這部分知識點進行總結,從而加深對這部分知識的理解。歸納思想在數學學習中應用非常多,在進行初中數學教學環節中,學生應該花更多的時間進行歸納。

  在進行初中數學的學習中,學生歸納意識的養成可以完善學生的數學思維,學生學會歸納,在學習中就會如魚得水,在考試中取得好成績。

  四、在反思中完成知識點的歸納

初中數學知識點總結3

  初中數學基礎知識點

  平方根:①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

  立方根:①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

  實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。

  初中數學平行四邊形的性質知識點

  1.定義:兩組對邊分別平行的四邊形叫平行四邊形

  2.平行四邊形的性質

  (1)平行四邊形的對邊平行且相等;

  (2)平行四邊形的鄰角互補,對角相等;

  (3)平行四邊形的對角線互相平分;

  3.平行四邊形的判定

  平行四邊形是幾何中一個重要內容,如何根據平行四邊形的性質,判定一個四邊形是平行四邊形是個重點,下面就對平行四邊形的五種判定方法,進行劃分:

  第一類:與四邊形的對邊有關

  (1)兩組對邊分別平行的四邊形是平行四邊形;

  (2)兩組對邊分別相等的四邊形是平行四邊形;

  (3)一組對邊平行且相等的四邊形是平行四邊形;

  第二類:與四邊形的對角有關

  (4)兩組對角分別相等的四邊形是平行四邊形;

  第三類:與四邊形的對角線有關

  (5)對角線互相平分的四邊形是平行四邊形

  初中數學函數知識點總結

  1.一次函數

  (1)定義:形如y=kx+b(k、b是常數,且k≠0)的函數,叫做一次函數。特別地,當b=0時,y是x的正比例函數。即:y=kx(k為常數,k≠0)

  所以,正比例函數是特殊的一次函數。

  (2)一次函數的圖像及性質:

  1在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。

  2一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)。

  3正比例函數的圖像總是過原點。

  4k,b與函數圖像所在象限的關系:

  當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。

  當k>0,b>0時,直線通過一、二、三象限;

  當k>0,b<0時,直線通過一、三、四象限;

  當k<0,b>0時,直線通過一、二、四象限;

  當k<0,b<0時,直線通過二、三、四象限;

  當b=0時,直線通過原點O(0,0)表示的.是正比例函數的圖像。

  這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

  2.二次函數

  (1)定義:一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c(a,b,c為常數,a≠0,),稱y為x的二次函數。

  (2)二次函數的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數,a≠0);

  頂點式:y=a(x-h)^2+k(拋物線的頂點P(h,k));

  交點式:

  (3)二次函數的圖像與性質

  1二次函數的圖像是一條拋物線。

  2拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。

  特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)。

  3二次項系數a決定拋物線的開口方向。

  當a>0時,拋物線向上開口;

  當a<0時,拋物線向下開口。

  4一次項系數b和二次項系數a共同決定對稱軸的位置。

  當a與b同號時(即ab>0),對稱軸在y軸左;

  當a與b異號時(即ab<0),對稱軸在y軸右。

  5拋物線與x軸交點個數

  Δ=b^2-4ac>0時,拋物線與x軸有2個交點;

  Δ=b^2-4ac=0時,拋物線與x軸有1個交點;

  Δ=b^2-4ac<0時,拋物線與x軸沒有交點。

  3.反比例函數

  (1)定義:形如y=k/x(k為常數且k≠0) 的函數,叫做反比例函數。

  (2)反比例函數圖像性質:

  1反比例函數的圖像為雙曲線;

  當K>0時,反比例函數圖像經過一,三象限,是減函數;

  當K<0時,反比例函數圖像經過二,四象限,是增函數;

  反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。

  2由于反比例函數屬于奇函數,有f(-x)=-f(x),圖像關于原點對稱。

初中數學知識點總結4

  銳角三角函數定義

  銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數。

  正弦(sin):對邊比斜邊,即sinA=a/c;

  余弦(cos):鄰邊比斜邊,即cosA=b/c;

  正切(tan):對邊比鄰邊,即tanA=a/b;

  余切(cot):鄰邊比對邊,即cotA=b/a;

  正割(sec):斜邊比鄰邊,即secA=c/b;

  余割(csc):斜邊比對邊,即cscA=c/a。

  三角函數關系

  1、互余角的關系

  sin(90°—α)=cosα,cos(90°—α)=sinα,tan(90°—α)=cotα,cot(90°—α)=tanα。

  2、平方關系

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  3、積的關系

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  4、倒數關系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  兩角和差公式

  sin(A+B)= sinAcosB+cosAsinB

  sin(A—B)= sinAcosB—cosAsinB

  cos(A+B)= cosAcosB—sinAsinB

  cos(A—B)= cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1—tanAtanB)

  tan(A—B)=(tanA—tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB—1)/(cotB+cotA)

  cot(A—B)=(cotAcotB+1)/(cotB—cotA)

  1、不在同一直線上的三點確定一個圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。

  3、圓是以圓心為對稱中心的中心對稱圖形。

  4、圓是定點的距離等于定長的點的集合

  5、圓的內部可以看作是圓心的距離小于半徑的點的集合。

  6、圓的外部可以看作是圓心的距離大于半徑的點的集合。

  7、同圓或等圓的半徑相等。

  8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的'弦心距相等。

  10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。

  11、定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角。

  13、切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  14、切線的性質定理圓的切線垂直于經過切點的半徑。

  15、推論1經過圓心且垂直于切線的直線必經過切點。

初中數學知識點總結5

  初中生經過中考的奮力拼搏,剛跨入高中,都有十足的信心,旺盛的求知欲,都有把高中課程學好的愿望。但經過一段時間,他們普遍感覺高中數學并非想象中那么簡單易學,而是太枯燥,泛味,抽象,晦澀,有些章節如聽天書。在做習題,課外練習時,又是磕磕碰碰,跌跌撞撞,常常感到茫然一片,不知從何下手。造成這種現象的原因是多方面的,但最主要的根源還在于初,高中數學教學上的銜接問題。下面就這個問題進行分析,探討其原因,尋找解決對策。

  一、高一學生學習數學產生困難是造成數學成績下降的主要原因

  (一)教材的原因。

  由于實行九年制義務教育和倡導全面提高學生素質,現行初中數學教材在內容上進行了較大幅度的調整,難度,深度和廣度大大降低了,那些在高中學習中經常應用到的知識,如:對數,二次不等式,解斜三角形,分數指數冪等內容,都轉移到高一階段補充學習。這樣初中教材就體現了"淺,少,易"的特點,但卻加重了高一數學的份量。另外,初中數學教材中每一新知識的引入往往與學生日常生活實際很貼近,比較形象,并遵循從感性認識上升到理性認識的規律,學生一般都容易理解,接受和掌握。且目前初中教材敘述方法比較簡單,語言通俗易懂,直觀性,趣味性強,結論容易記憶,應試效果也比較理想。

  相對而言,高中數學一開始,概念抽象,定理嚴謹,邏輯性強,教材敘述比較嚴謹,規范,抽象思維和空間想象明顯提高,知識難度加大,且習題類型多,解題技巧靈活多變,計算繁冗復雜,體現了"起點高,難度大,容量多"的特點。

  (二)教法的原因。

  初中數學教學內容少,知識難度不大,教學要求較低,因而教學進度較慢,對于某些重點,難點,教師可以有充裕的時間反復講解,多次演練,從而各個擊破、另外,為了應付中考,初中教師大多數采用"滿堂灌"填鴨式的教學模式,單純地向學生傳授知識,并讓學生通過機械模仿式的重復練習以達到熟能生巧的程度,結果造成"重知識,輕能力","重局部,輕整體","重試卷(復習資料),輕書本"的不良傾向。這種封閉被動的傳統教學方式嚴重束縛了學生思維的發展,影響了學生發現意識的形成,創新思維受到了扼制。但是進入高中以后,教材內涵豐富,教學要求高,進度快,知識信息廣泛,題目難度加深,知識的重點和難點也不可能象初中那樣通過反復強調來排難釋疑。而且高中教學往往通過設導,設問,設陷,設變,啟發引導,開拓思路,然后由學生自己去思考,去解答,比較注意知識的發生過程,傾重對學生思想方法的滲透和思維品質的培養。這使得剛進入高中的學生不容易適應這種教學方法。聽課時就存在思維障礙,不容易跟上教師的思維,從而產生學習障礙,影響數學的學習。

  (三)學生自身的原因。

  ①被動學習

  在初中,教師講得細,類型歸納得全,反復練習。考試時,學生只要記憶概念,公式,及例題類型,一般都可以對號入座取得好成績。因此,學生習慣于圍著教師轉,不需要獨立思考和對規律進行歸納總結。學生滿足于你講我聽,你放我錄,缺乏學習主動性。表現在不定計劃,坐等上課,課前沒有預習,對老師上課的.內容不了解,上課忙于記筆記,沒聽到"門道",沒有真正理解所學內容。而到了高中,數學學習要求學生勤于思考,善于歸納總結規律,掌握數學思想方法,做到舉一反三,觸類旁通。所以,剛入學的高一新生,往往沿用初中學法,致使學習出現困難,完成當天作業都很困難,更沒有預習,復習,總結等自我消化,自我調整的時間。這顯然不利于良好學法的形成和學習質量的提高。造成高一學生數學學習的困難。

  ②學不得法

  老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固,總結,尋找知識間的聯系,只是趕做作業,亂套題型,對概念,法則,公式,定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。

  二、搞好初高中數學教學銜接,幫助學生渡過學習數學"困難期"的對策

  (一)做好準備工作,為搞好銜接打好基礎。

  1、搞好入學教育。這是搞好銜接的基礎工作,也是首要工作。

  通過入學教育提高學生對初高中銜接重要性的認識,增強緊迫感,消除松懈情緒,初步了解高中數學學習的特點,為其它措施的落實奠定基礎。這里主要做好四項工作:一是給學生講清高一數學在整個中學數學中所占的位置和作用;二是結合實例,采取與初中對比的方法,給學生講清高中數學內容體系特點和課堂教學特點;三是結合實例給學生講明初高中數學在學法上存在的本質區別,并向學生介紹一些優秀學法,指出注意事項;四是請高年級學生談體會講感受,引導學生少走彎路,盡快適應高中學習。

  2、摸清底數,規劃教學。為了搞好初高中銜接,教師首先要摸清學生的學習基礎,然后以此來規劃自己的教學和落實教學要求,以提高教學的針對性。在教學實際中,一方面通過進行摸底測試和對入學成績的分析,了解學生的基礎;另一方面,認真學習和比較初高中教學大綱和教材,以全面了解初高中數學知識體系,找出初高中知識的銜接點,區別點和需要鋪路搭橋的知識點,以使備課和講課更符合學生實際,更具有針對性。

  (二)優化課堂教學環節,搞好初高中數學知識銜接教學。

  1、立足于大綱和教材,尊重學生實際,實行層次教學。

  高一數學中有許多難理解和掌握的知識點,如集合,映射等,對高一新生來講確實困難較大。因此,在教學中,應從高一學生實際出發,采用低起點,小梯度,多訓練,分層次"的方法,將教學目標分解成若干遞進層次逐層落實。在速度上,放慢起始進度,逐步加快教學節奏。在知識導入上,多由實例和已知引入。在知識落實上,先落實"死"課本,后變通延伸用活課本。在難點知識講解上,從學生理解和掌握的實際出發,對教材作必要層次處理和知識鋪墊,并對知識的理解要點和應用注意點作必要總結及舉例說明。

  2、重視新舊知識的聯系與區別,建立知識網絡。

  初高中數學有很多銜接知識點,如函數概念,平面幾何與立體幾何相關知識等,到高中,它們有的加深了,有的研究范圍擴大了,有些在初中成立的結論到高中可能不成立。因此,在講授新知識時,應當有意引導學生聯系舊知識,復習和區別舊知識,特別注重對那些易錯易混的知識加以分析,比較和區別。這樣可達到溫故知新,溫故而探新的效果。

  3、重視展示知識的形成過程和方法探索過程,培養學生創造能力。

  高中數學比初中數學抽象性強,應用靈活,這就要求學生對知識理解要透,應用要活,不能只停留在對知識結論的死記硬套上,這就要求教師應向學生展示新知識和新解法的產生背景,形成和探索過程,不僅使學生掌握知識和方法的本質,提高應用的靈活性,而且還使學生學會如何質疑和釋疑的思想方法,促進創造性思維能力的提高。

  4、重視培養學生自我反思自我總結的良好習慣,提高學習的自覺性。

  高中數學概括性強,題目靈活多變,課上聽懂是不夠的,需要課后進行認真消化,認真總結歸納。這就要求學生應具備善于自我反思和自我總結的能力。因此,在教學中,應當抓住時機積極培養。在單元結束時,幫助學生進行自我章節小結,在解題后,積極引導學生反思:思解題思路和步驟,思一題多解和一題多變,思解題方法和解題規律的總結。由此培養學生善于進行自我反思的習慣,擴大知識和方法的應用范圍,提高學習效率。

  (三)加強學法指導,培養良好學習習慣

初中數學知識點總結6

  1、過兩點有且只有一條直線

  2、兩點之間線段最短

  3、同角或等角的補角相等——補角=180-角度。

  4、同角或等角的余角相等——余角=90-角度。

  5、過一點有且只有一條直線和已知直線垂直

  6、直線外一點與直線上各點連接的所有線段中,垂線段最短

  7、平行公理:經過直線外一點,有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內錯角相等,兩直線平行

  11、同旁內角互補,兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內錯角相等

  14、兩直線平行,同旁內角互補

  15、定理

  xxx兩邊的和大于第三邊

  16、推論

  xxx兩邊的差小于第三邊

  17、xxx內角和定理:

  xxx三個內角的和等于180°

  18、推論1

  直角xxx的兩個銳角互余

  19、推論2

  xxx的一個外角等于和它不相鄰的兩個內角的和

  20、推論3

  xxx的一個外角大于任何一個和它不相鄰的內角

  21、全等xxx的對應邊、對應角相等

  22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個xxx全等

  23、角邊角公理(ASA):有兩角和它們的夾邊對應相等的

  兩個xxx全等

  24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個xxx全等

  25、邊邊邊公理(SSS):有三邊對應相等的兩個xxx全等

  26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個直角xxx全等

  27、定理1

  在角的平分線上的點到這個角的兩邊的距離相等

  28、定理2

  到一個角的兩邊的距離相同的點,在這個角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點的集合

  30、推論1

  等腰xxx頂角的平分線平分底邊并且垂直于底邊

  31、推論2

  等腰xxx的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

  32、推論3

  等邊xxx的各角都相等,并且每一個角都等于60°

  33、等腰xxx的判定定理

  如果一個xxx有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  34、等腰xxx的性質定理

  等腰xxx的兩個底角相等

  (即等邊對等角)

  35、推論1

  三個角都相等的xxx是等邊xxx

  36、推論

  有一個角等于60°的等腰xxx是等邊xxx

  37、在直角xxx中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

  38、直角xxx斜邊上的中線等于斜邊上的一半

  39、定理

  線段垂直平分線上的點和這條線段兩個端點的距離相等

  40、逆定理

  和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42、定理1

  關于某條直線對稱的兩個圖形是全等形

  43、定理

  如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

  44、定理3

  兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

  45、逆定理

  如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱

  46、勾股定理

  直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理

  如果xxx的三邊長a、b、c有關系a2+b2=c2,那么這個xxx是直角xxx

  48、定理

  四邊形的內角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內角和定理

  n邊形的內角的和等于(n-2)×180°

  51、推論

  任意多邊的外角和等于360°

  52、平行四邊形性質定理1

  平行四邊形的對角相等

  53、平行四邊形性質定理2

  平行四邊形的對邊相等

  54、推論

  夾在兩條平行線間的平行線段相等

  55、平行四邊形性質定理3

  平行四邊形的對角線互相平分

  56、平行四邊形判定定理1

  兩組對角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2

  兩組對邊分別相等的四邊

  形是平行四邊形

  58、平行四邊形判定定理3

  對角線互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4

  一組對邊平行相等的四邊形是平行四邊形

  60、矩形性質定理1

  矩形的四個角都是直角

  61、矩形性質定理2

  矩形的對角線相等

  62、矩形判定定理1

  有三個角是直角的四邊形是矩形

  63、矩形判定定理2

  對角線相等的平行四邊形是矩形

  64、菱形性質定理1

  菱形的四條邊都相等

  65、菱形性質定理2

  菱形的對角線互相垂直,并且每一條對角線平分一組對角

  66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1

  四邊都相等的四邊形是菱形

  68、菱形判定定理2

  對角線互相垂直的平行四邊形是菱形

  69、正方形性質定理1

  正方形的四個角都是直角,四條邊都相等

  70、正方形性質定理2

  正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71、定理1

  關于中心對稱的兩個圖形是全等的

  72、定理2

  關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分

  73、逆定理

  如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱

  74、等腰梯形性質定理

  等腰梯形在同一底上的兩個角相等

  75、等腰梯形的兩條對角線相等

  76、等腰梯形判定定理

  在同一底上的兩個角相等的梯

  形是等腰梯形

  77、對角線相等的梯形是等腰梯形

  78、平行線等分線段定理

  如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79、推論1

  經過梯形一腰的中點與底平行的.直線,必平分另一腰

  80、推論2

  經過xxx一邊的中點與另一邊平行的直線,必平分第三邊

  81、xxx中位線定理

  xxx的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理

  梯形的中位線平行于兩底,并且等于兩底和的一半

  L=(a+b)÷2

  S=L×h

  83、(1)比例的基本性質:如果a:b=c:d,那么ad=bc

  如果

  ad=bc,那么a:b=c:d

  84、(2)合比性質:如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線分線段成比例定理

  三條平行線截兩條直線,所得的對應線段成比例

  87、推論

  平行于xxx一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

  88、定理

  如果一條直線截xxx的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于xxx的第三邊

  89、平行于xxx的一邊,并且和其他兩邊相交的直線,所截得的xxx的三邊與原xxx三邊對應成比例

  90、定理

  平行于xxx一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的xxx與原xxx相似

  91、相似xxx判定定理1

  兩角對應相等,兩xxx相似(ASA)

  92、直角xxx被斜邊上的高分成的兩個直角xxx和原xxx相似

  93、判定定理2

  兩邊對應成比例且夾角相等,兩xxx相似(SAS)

  94、判定定理3

  三邊對應成比例,兩xxx相似(SSS)

  95、定理

  如果一個直角xxx的斜邊和一條直角邊與另一個直角xxx的斜邊和一條直角邊對應成比例,那么這兩個直角xxx相似(HL)

  96、性質定理1

  相似xxx對應高的比,對應中線的比與對應角平分線的比都等于相似比

  97、性質定理2

  相似xxx周長的比等于相似比

  98、性質定理3

  相似xxx面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

  101、圓是定點的距離等于定長的點的集合

  102、圓的內部可以看作是圓心的距離小于半徑的點的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點的集合

  104、同圓或等圓的半徑相等

  105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

  107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109、定理

  不在同一直線上的三點確定一個圓。

  110、垂徑定理

  垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111、推論1

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

  ②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧(直徑)

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112、推論2

  圓的兩條平行弦所夾的弧相等

  113、圓是以圓心為對稱中心的中心對稱圖形

  114、定理

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論

  在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  116、定理

  一條弧所對的圓周角等于它所對的圓心角的一半

  117、推論1

  同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118、推論2

  半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119、推論3

  如果xxx一邊上的中線等于這邊的一半,那么這個xxx是直角xxx

  120、定理

  圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角

  121、①直線L和⊙O相交

  0

  ②直線L和⊙O相切

  d=r

  ③直線L和⊙O相離

  d>r

  122、切線的判定定理

  經過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123、切線的性質定理

  圓的切線垂直于經過切點的半徑

  124、推論1

  經過圓心且垂直于切線的直線必經過切點

  125、推論2

  經過切點且垂直于切線的直線必經過圓心

  126、切線長定理

  從圓外一點引圓的兩條切線相交與一點,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理

  弦切角等于它所夾的弧對的圓周角?

  129、推論

  如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

  130、相交弦定理

  圓內的兩條相交弦,被交點分成的兩條線段長的積相等

  131、推論

  如果弦與直徑垂直相交,那么弦的一半是它分直徑xxx的兩條線段的比例中項

  132、切割線定理

  從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?

  133、推論

  從圓外一點引圓的兩條割線,這一點到每條

  割線與圓的交點的兩條線段長的積相等

  134、如果兩個圓相切,那么切點一定在連心線上

  135、①兩圓外離

  d>R+r

  ②兩圓外切

  d=R+r

  ③兩圓相交

  R-r<d<R+r(R>r)

  ④兩圓內切

  d=R-r(R>r)

  ⑤兩圓內含

  d<R-r(R>r)

  136、定理

  相交兩圓的連心線垂直平分兩圓的公共弦

  137、定理

  把圓平均分成n(n≥3):

  ⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

  ⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  138、定理

  任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

  139、正n邊形的每個內角都等于(n-2)×180°/n

  140、定理

  正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角xxx

  141、正n邊形的面積Sn=pn*rn/2

  p表示正n邊形的周長

  142、正xxx面積√3a^2/4

  a表示邊長

  143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144、弧長計算公式:L=n兀R/180——》L=nR

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2

  146、內公切線長=d-(R-r)

  外公切線長=d-(R+r)

初中數學知識點總結7

  一次函數的圖象與性質的口訣:

  一次函數是直線,圖象經過三象限;

  正比例函數更簡單,經過原點一直線;

  兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與y軸來相見,k為正來右上斜,x增減y增減;

  k為負來左下展,變化規律正相反;

  k的絕對值越大,線離橫軸就越遠。

  拓展閱讀:一次函數的解題方法

  理解一次函數和其它知識的聯系

  一次函數和代數式以及方程有著密不可分的聯系。如一次函數和正比例函數仍然是函數,同時,等號的兩邊又都是代數式。需要注意的是,與一般代數式有很大區別。首先,一次函數和正比例函數都只能存在兩個變量,而代數式可以是多個變量;其次,一次函數中的變量指數只能是1,而代數式中變量指數還可以是1以外的數。另外,一次函數解析式也可以理解為二元一次方程。

  掌握一次函數的解析式的特征

  一次函數解析式的結構特征:kx+b是關于x的一次二項式,其中常數b可以是任意實數,一次項系數k必須是非零數,k≠0,因為當k = 0時,y = b(b是常數),由于沒有一次項,這樣的函數不是一次函數;而當b = 0,k≠0,y = kx既是正比例函數,也是一次函數。

  應用一次函數解決實際問題

  1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關聯的量,且其中一種量因另一種量的變化而變化;

  2、找出具有相關聯的兩種量的等量關系之后,明確哪種量是另一種量的函數;

  3、在實際問題中,一般存在著三種量,如距離、時間、速度等等,在這三種量中,當且僅當其中一種量時間(或速度)不變時,距離與速度(或時間)才成正比例,也就是說,距離(s)是時間(t)或速度( )的正比例函數;

  4、求一次函數與正比例函數的關系式,一般采取待定系數法。

  數形結合

  方程,不等式,不等式組,方程組我們都可以用一次函數的觀點來理解。一元一次不等式實際上就看兩條直線上下方的關系,求出端點后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來認識,直線交點的橫坐標就是方程的解,至于二元一次方程組就是對應2條直線,方程組的解就是直線的交點,結合圖形可以認識兩直線的位置關系也可以把握交點個數。

  如果一個交點時候兩條直線的k不同,如果無窮個交點就是k,b都一樣,如果平行無交點就是k相同,b不一樣。至于函數平移的問題可以化歸為對應點平移。k反正不變然后用待定系數法得到平移后的方程。這就是化一般為特殊的解題方法。

  數學解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個或多個多項式正整數冪的和形式。通過配方解決數學問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數學中不斷變形的重要方法,其應用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數的極值和解析表達式。

  2、因式分解法

  因式分解是將多項式轉換為幾個積分產品的乘積。分解是恒定變形的基礎。除了引入中學教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數等等。

  3、換元法

  替代方法是數學中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數替換原始公式的一部分或重新構建原始公式可以更簡單,更容易解決。

  4、判別式法與韋達定理

  一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來確定根的性質,還作為一個問題解決方法,代數變形,求解方程(組),求解不等式,研究函數,甚至幾何以及三角函數都有非常廣泛的應用。

  韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個數的和和乘積的簡單應用并尋找這兩個數,也可以找到根的對稱函數并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關的問題等,具有非常廣泛的應用。

  5、待定系數法

  在解決數學問題時,如果我們首先判斷我們所尋找的結果具有一定的形式,其中包含某些未決的系數,然后根據問題的條件列出未確定系數的方程,最后找到未確定系數的值或這些待定系數之間的關系。為了解決數學問題,這種問題解決方法被稱為待定系數法。它是中學數學中常用的方法之一。

  6、構造法

  在解決問題時,我們通常通過分析條件和結論來使用這些方法來構建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數,一個等價的命題等,架起連接條件和結論的橋梁。為了解決這個問題,這種解決問題的數學方法,我們稱之為構造方法。運用結構方法解決問題可以使代數,三角形,幾何等數學知識相互滲透,有助于解決問題。

  數學經常遇到的問題解答

  1、要提高數學成績首先要做什么?

  這一點,是很多學生所關注的`,要提高數學成績,首先就應該從基礎知識學起。不少同學覺得基礎知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎不牢的表現,因此要提高數學成績先要把基礎夯實。

  2、基礎不好怎么學好數學?

  對于基礎差的同學來說,課本是就是學好數學的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學活用,把課本的知識學透有兩個好處,第一,強化基礎;第二,提高得分能力。

  3、是否要采用題海戰術?

  方法君曾不止一次提到了“題海戰術”,題海戰術究竟可不可取呢?“題海戰術”其實也是一種學習方法,但很多學生只知道做題,不懂得總結,體現不出任何的學習效果。因此在做題后要總結至關重要,只有認真總結才能不斷積累做題經驗,這樣才能取得理想成績。

  4、做題總是粗心怎么辦?

  很多學生成績不好,會說自己是因為粗心導致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎知識不牢、沒有清晰的解題思路、計算能力不強。因此在平時的學習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學習弱點,所以,要告訴自己,高中數學沒有“粗心”只有“不用心”。

  為什么要學習數學

  作為一門普及度極廣的學科,數學在人類文明的發展史上一直占據著重要的地位。雖然很多人可能會對數學產生排斥,認為它枯燥無味,但事實上,數學是所有學科的基石之一,對我們日常生活以及未來的職業發展有著重大影響。下面我將詳細闡述學習數學的重要性。

  首先,數學可以幫助我們提高邏輯思維能力。數學的學科性質使我們在學習的過程中時時刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機會。通過長期的學習和練習,我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復雜問題時更能得心應手。

  其次,數學在現代科技中起著至關重要的作用。在計算機科學、物理學、經濟學、工程學等領域,數學可以幫助我們建立模型、分析數據、預測趨勢,并且可以在實際應用中優化和改進。例如,在人工智能領域,深度學習技術所涉及的數學概念包括線性代數、微積分和概率論等,如果沒有深厚的數學基礎,很難理解和應用這些技術。同時,在工程學領域,許多機械、電子、化工等產品的設計和制造過程,也需要運用到數學知識,因此學習數學可以使我們更好地參與到現代科技的發展中。

  除此之外,數學也是一種普遍使用的語言,許多學科和領域都使用數學語言進行表達和交流。例如,在自然科學領域,生物學、化學、物理學等學科都使用數學語言來描述自然世界的規律和現象。在社會科學和商科領域,經濟學和金融學運用的數學概念,如微積分、線性代數和統計學等,使得我們能夠更好地理解經濟和財務數據,并進行決策。因此,學習數學可以讓我們更好地理解、溝通和交流各個領域的知識。

  最后,學習數學也可以為我們的職業發展帶來廣泛的機遇和發展空間。在許多領域,數學專業的畢業生都有很廣泛的就業機會,如金融界、數據科學、研究機構、教育等。數學專業的人才,不只會提供理論支持,同時也能夠解決現實中具體的問題,使其在各自領域脫穎而出。

初中數學知識點總結8

  一、基本知識

  一、數與代數

  A、數與式:

  1、有理數:

  ①整數→正整數,0,負整數;

  ②分數→正分數,負分數

  數軸:

  ①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。

  ②任何一個有理數都可以用數軸上的一個點來表示。

  ③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。

  ④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。

  絕對值:

  ①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。

  ②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0、兩個負數比較大小,絕對值大的反而小。

  有理數的運算:帶上符號進行正常運算。

  加法:

  ①同號相加,取相同的符號,把絕對值相加。

  ②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。

  ③一個數與0相加不變。

  減法:減去一個數,等于加上這個數的相反數。

  乘法:

  ①兩數相乘,同號得正,異號得負,絕對值相乘。

  ②任何數與0相乘得0、

  ③乘積為1的兩個有理數互為倒數。

  除法:

  ①除以一個數等于乘以一個數的倒數。

  ②0不能作除數。

  乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數或指數。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實數

  無理數

  無理數:無限不循環小數叫無理數,例如:π=…

  平方根:

  ①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。

  ②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。

  ③一個正數有2個平方根;0的平方根為0;負數沒有平方根。

  ④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

  立方根:

  ①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。

  ②正數的立方根是正數、0的立方根是0、負數的立方根是負數。

  ③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

  實數:

  ①實數分有理數和無理數。

  ②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣;

  ③每一個實數都可以在數軸上的一個點來表示。

  3、代數式

  代數式:單獨一個數或者一個字母也是代數式。

  合并同類項:

  ①所含字母相同,并且相同字母的指數也相同的項,叫做同類項;②把同類項合并成一項就叫做合并同類項。

  ③在合并同類項時,我們把同類項的系數相加,字母和字母的指數不變。

  4、整式與分式

  整式:

  ①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。

  ②一個單項式中,所有字母的指數和叫做這個單項式的次數。

  ③一個多項式中,次數最高的項的次數叫做這個多項式的次數。

  整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

  冪的運算:

  A^M+A^N=A^(M+N)

  (A^M)^N=A^(MN

  (A/B)^N=A^N/B^N

  除法一樣。

  整式的乘法:

  ①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。

  ②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。

  ③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式:A^2—B^2=(A+B)(A—B);

  完全平方公式:(A+B)^2=A^2+2AB+B^2;(A—B)^2=A^2—2AB+B^2、

  整式的除法:

  ①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。

  ②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:

  ①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0、

  ②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。

  分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個分式等于乘以這個分式的倒數。

  加減法:

  ①同分母分式相加減,分母不變,把分子相加減。

  ②異分母的分式先通分,化為同分母的分式,再加減。

  分式方程:

  ①分母中含有未知數的方程叫分式方程。

  ②使方程的分母為0的解稱為原方程的增根。

  B、方程與不等式

  1、方程與方程組

  一元一次方程:

  ①在一個方程中,只含有一個未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。

  ②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類項,未知數系數化為1、

  二元一次方程:含有兩個未知數,并且所含未知數的項的次數都是1的.方程叫做二元一次方程。

  二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

  適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。

  二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。

  解二元一次方程組的方法:代入消元法;加減消元法。

  一元二次方程:只有一個未知數,并且未知數的項的最高系數為2的方程:ax^2+bx+c=0;

  1)一元二次方程的二次函數的關系

  大家已經學過二次函數(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數來表示,其實一元二次方程也是二次函數的一個特殊情況,就是當Y=0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數中,圖像與X軸的交點。也就是該方程的解了

  2)一元二次方程的解法

  大家知道,二次函數有頂點式(—b/2a,4ac—b^2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函數的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

  (1)配方法

  利用配方,使方程變為完全平方公式,在用直接開平方法去求出解

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

  (3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={—b+√[b^2—4ac)]}/2a,X2={—b—√[b^2—4ac)]}/2a

  3)解一元二次方程的步驟:

  (1)配方法的步驟:

  先把常數項移到方程的右邊,再把二次項的系數化為1,再同時加上1次項的系數的一半的平方,最后配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

  (3)公式法

  就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c

  4)韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a

  也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用

  5)一元二次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao ta”,而△=b2—4ac,這里可以分為3種情況:

  I當△>0時,一元二次方程有2個不相等的實數根;

  II當△=0時,一元二次方程有2個相同的實數根;

  III當△B,則A+C>B+C;

  在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;

  例如:如果A>B,則A—C>B—C;

  在不等式中,如果乘以同一個正數,不等式符號不改向;

  例如:如果A>B,則A*C>B*C(C>0);

  在不等式中,如果乘以同一個負數,不等號改向;

  例如:如果A>B,則A*C

  如果不等式乘以0,那么不等號改為等號;

  所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘的數就不等于0,否則不等式不成立;

  3、函數

  變量:因變量Y,自變量X。

  在用圖像表示變量之間的關系時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。

  一次函數:

  ①若兩個變量X,Y間的關系式可以表示成Y=KX+B(B為常數,K不等于0)的形式,則稱Y是X的一次函數。

  ②當B=0時,稱Y是X的正比例函數。

  一次函數的圖像:

  ①把一個函數的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖像。

  ②正比例函數Y=KX的圖像是經過原點的一條直線。

  ③在一次函數中,當K〈0,B〈O時,則經234象限;

  當K〈0,B〉0時,則經124象限;

  當K〉0,B〈0時,則經134象限;

  當K〉0,B〉0時,則經123象限。

  ④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。

  二空間與圖形

  A、圖形的認識

  1、點,線,面

  點,線,面:

  ①圖形是由點,線,面構成的。

  ②面與面相交得線,線與線相交得點。

  ③點動成線,線動成面,面動成體。

  展開與折疊:

  ①在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。

  ②N棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

  弧、扇形:

  ①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。

  ②圓可以分割成若干個扇形。

  2、角

  線:

  ①線段有兩個端點。

  ②將線段向一個方向無限延長就形成了射線。射線只有一個端點。

  ③將線段的兩端無限延長就形成了直線。直線沒有端點。

  ④經過兩點有且只有一條直線。

  比較長短:

  ①兩點之間的所有連線中,線段最短。兩點之間直線最短。

  ②兩點之間線段的長度,叫做這兩點之間的距離。

  角的度量與表示:

  ①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

  ②一度的1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。

  角的比較:

  ①角也可以看成是由一條射線繞著他的端點旋轉而成的。

  ②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角,180、始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角,360、

  ③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:

  ①同一平面內,不相交的兩條直線叫做平行線。

  ②經過直線外一點,有且只有一條直線與這條直線平行。

  ③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

  垂直:

  ①如果兩條直線相交成直角,那么這兩條直線互相垂直。

  ②互相垂直的兩條直線的交點叫做垂足。

  ③平面內,過一點有且只有一條直線與已知直線垂直。

  垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關于畫法,后面會講)一定要把線段穿出2點。

  垂直平分線定理:

  性質定理:在垂直平分線上的點到該線段兩端點的距離相等;

  判定定理:到線段2端點距離相等的點在這線段的垂直平分線上;

  角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角的角平分線就是到角兩邊距離相等的點的集合。

  性質定理:角平分線上的點到該角兩邊的距離相等;

  判定定理:到角的兩邊距離相等的點在該角的角平分線上;

  正方形:一組鄰邊相等的矩形是正方形

  性質:正方形具有平行四邊形、菱形、矩形的一切性質

  判定:

  1、對角線相等的菱形

  2、鄰邊相等的矩形

  二、基本定理

  1、過兩點有且只有一條直線

  2、兩點之間線段最短

  3、同角或等角的補角相等——補角=180—角度。

  4、同角或等角的余角相等——余角=90—角度。

  5、過一點有且只有一條直線和已知直線垂直

  6、直線外一點與直線上各點連接的所有線段中,垂線段最短

  7、平行公理:經過直線外一點,有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內錯角相等,兩直線平行

  11、同旁內角互補,兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內錯角相等

  14、兩直線平行,同旁內角互補

  15、定理:三角形兩邊的和大于第三邊

  16、推論:三角形兩邊的差小于第三邊

  17、三角形內角和定理:三角形三個內角的和等于180°

  18、推論1:直角三角形的兩個銳角互余

  19、推論2:三角形的一個外角等于和它不相鄰的兩個內角的和

  20、推論3:三角形的一個外角大于任何一個和它不相鄰的內角

  21、全等三角形的對應邊、對應角相等

  22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等

  23、角邊角公理(ASA):有兩角和它們的夾邊對應相等的兩個三角形全等

  24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等

  25、邊邊邊公理(SSS):有三邊對應相等的兩個三角形全等

  26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等

  27、定理1:在角的平分線上的點到這個角的兩邊的距離相等

  28、定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點的集合

  30、推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊

  31、推論2:等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

  32、推論3:等邊三角形的各角都相等,并且每一個角都等于60°

  33、等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  34、等腰三角形的性質定理:等腰三角形的兩個底角相等(即等邊對等角)

  35、推論1:三個角都相等的三角形是等邊三角形

  36、推論:有一個角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

  38、直角三角形斜邊上的中線等于斜邊上的一半

  39、定理:線段垂直平分線上的點和這條線段兩個端點的距離相等

  40、逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42、定理1:關于某條直線對稱的兩個圖形是全等形

  43、定理:如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

  44、定理3:兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

  45、逆定理:如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱

  46、勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理:如果三角形的三邊長a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形

  48、定理:四邊形的內角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內角和定理:n邊形的內角的和等于(n—2)×180°

  51、推論:任意多邊的外角和等于360°

  52、平行四邊形性質定理1:平行四邊形的對角相等

  53、平行四邊形性質定理2:行四邊形的對邊相等

  54、推論:夾在兩條平行線間的平行線段相等

  55、平行四邊形性質定理3:平行四邊形的對角線互相平分

  56、平行四邊形判定定理1:兩組對角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2:兩組對邊分別相等的四邊形是平行四邊形

  58、平行四邊形判定定理3:對角線互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4:一組對邊平行相等的四邊形是平行四邊形

  60、矩形性質定理1:矩形的四個角都是直角

  61、矩形性質定理2:矩形的對角線相等

  62、矩形判定定理1:有三個角是直角的四邊形是矩形

  63、矩形判定定理2:對角線相等的平行四邊形是矩形

  64、菱形性質定理1:菱形的四條邊都相等

  65、菱形性質定理2:菱形的對角線互相垂直,并且每一條對角線平分一組對角

  66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1:四邊都相等的四邊形是菱形

  68、菱形判定定理2:對角線互相垂直的平行四邊形是菱形

  69、正方形性質定理1:正方形的四個角都是直角,四條邊都相等

  70、正方形性質定理2:正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71、定理1:關于中心對稱的兩個圖形是全等的

  72、定理2:關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分

  73、逆定理:如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱

  74、等腰梯形性質定理:等腰梯形在同一底上的兩個角相等

  75、等腰梯形的兩條對角線相等

  76、等腰梯形判定定理:在同一底上的兩個角相等的梯形是等腰梯形

  77、對角線相等的梯形是等腰梯形

  78、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79、推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰

  80、推論2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

  81、三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2,S=L×h

  83、(1)比例的基本性質:如果a:b=c:d,那么ad=bc,ad=bc,那么a:b=c:d

  84、(2)合比性質:如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例

  87、推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

  88、定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

  90、定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

  91、相似三角形判定定理1:兩角對應相等,兩三角形相似(ASA)

  92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

  93、判定定理2:兩邊對應成比例且夾角相等,兩三角形相似(SAS)

  94、判定定理3:三邊對應成比例,兩三角形相似(SSS)

  95、定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似(HL)

  96、性質定理1:相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比

  97、性質定理2:相似三角形周長的比等于相似比

  98、性質定理3:相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90—a),cos(a)=sin(90—a)(a<90)

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90—a),cot(a)=tan(90—a)

  101、圓是定點的距離等于定長的點的集合

  102、圓的內部可以看作是圓心的距離小于半徑的點的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點的集合

  104、同圓或等圓的半徑相等

  105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

  107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109、定理:不在同一直線上的三點確定一個圓。

  110、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111、推論1

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

  ②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧(直徑)

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112、推論2

  圓的兩條平行弦所夾的弧相等

  113、圓是以圓心為對稱中心的中心對稱圖形

  114、定理

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論

  在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  116、定理

  一條弧所對的圓周角等于它所對的圓心角的一半

  117、推論1

  同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118、推論2

  半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119、推論3

  如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

  120、定理

  圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角

  121、①直線L和⊙O相交0<=d<r

  ②直線L和⊙O相切d=r

  ③直線L和⊙O相離d>r

  122、切線的判定定理

  經過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123、切線的性質定理

  圓的切線垂直于經過切點的半徑

  124、推論1

  經過圓心且垂直于切線的直線必經過切點

  125、推論2

  經過切點且垂直于切線的直線必經過圓心

  126、切線長定理

  從圓外一點引圓的兩條切線相交與一點,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理

  弦切角等于它所夾的弧對的圓周角?

  129、推論

  如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

  130、相交弦定理

  圓內的兩條相交弦,被交點分成的兩條線段長的積相等

  131、推論

  如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

  132、切割線定理

  從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?

  133、推論

  從圓外一點引圓的兩條割線,這一點到每條

  割線與圓的交點的兩條線段長的積相等

  134、如果兩個圓相切,那么切點一定在連心線上

  135、①兩圓外離d>R+r

  ②兩圓外切d=R+r

  ③兩圓相交R—r<d<R+r(R>r)

  ④兩圓內切d=R—r(R>r)

  ⑤兩圓內含d<R—r(R>r)

  136、定理

  相交兩圓的連心線垂直平分兩圓的公共弦

  137、定理

  把圓平均分成n(n≥3):

  ⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

  ⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  138、定理

  任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

  139、正n邊形的每個內角都等于(n—2)×180°/n

  140、定理

  正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  141、正n邊形的面積Sn=pn*rn/2,p表示正n邊形的周長

  142、正三角形面積√3a^2/4,a表示邊長

  143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4

  144、弧長計算公式:L=n兀R/180——》L=nR

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2

  146、內公切線長=d—(R—r),外公切線長=d—(R+r)

初中數學知識點總結9

  第一章圖形的變換

  考點一、平移(3~5分)

  1、定義

  把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同,圖形的這種移動叫做平移變換,簡稱平移。

  2、性質

  (1)平移不改變圖形的大小和形狀,但圖形上的每個點都沿同一方向進行了移動

  (2)連接各組對應點的線段平行(或在同一直線上)且相等。

  考點二、軸對稱(3~5分)

  1、定義

  把一個圖形沿著某條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線成軸對稱,該直線叫做對稱軸。

  2、性質

  (1)關于某條直線對稱的兩個圖形是全等形。

  (2)如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線。

  (3)兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上。

  3、判定

  如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱。

  4、軸對稱圖形

  把一個圖形沿著某條直線折疊,如果直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線就是它的對稱軸。

  考點三、旋轉(3~8分)

  1、定義

  把一個圖形繞某一點o轉動一個角度的圖形變換叫做旋轉,其中o叫做旋轉中心,轉動的角叫做旋轉角。

  2、性質

  (1)對應點到旋轉中心的距離相等。

  (2)對應點與旋轉中心所連線段的夾角等于旋轉角。

  考點四、中心對稱(3分)

  1、定義

  把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

  2、性質

  (1)關于中心對稱的兩個圖形是全等形。

  (2)關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分。

  (3)關于中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。

  3、判定

  如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱。

  4、中心對稱圖形

  把一個圖形繞某一個點旋轉180°,如果旋轉后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個店就是它的對稱中心。

  考點五、坐標系中對稱點的特征(3分)

  1、關于原點對稱的點的特征

  兩個點關于原點對稱時,它們的坐標的符號相反,即點p(x,y)關于原點的對稱點為p’(-x,-y)

  2、關于x軸對稱的點的特征

  兩個點關于x軸對稱時,它們的坐標中,x相等,y的符號相反,即點p(x,y)關于x軸的對稱點為p’(x,-y)

  3、關于y軸對稱的點的特征

  兩個點關于y軸對稱時,它們的坐標中,y相等,x的符號相反,即點p(x,y)關于y軸的對稱點為p’(-x,y)

  第二章圖形的相似

  考點一、比例線段(3分)

  1、比例線段的相關概念

  如果選用同一長度單位量得兩條線段a,b的長度分別為m,n,那么就說這兩條線段的比是,或寫成a:b=m:n

  在兩條線段的比a:b中,a叫做比的前項,b叫做比的后項。

  在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段,簡稱比例線段

  若四條a,b,c,d滿足或a:b=c:d,那么a,b,c,d叫做組成比例的項,線段a,d叫做比例外項,線段b,c叫做比例內項,線段的d叫做a,b,c的第四比例項。

  如果作為比例內項的是兩條相同的線段,即或a:b=b:c,那么線段b叫做線段a,c的比例中項。

  2、比例的性質

  (1)基本性質

  ①a:b=c:dad=bc

  ②a:b=b:c

  (2)更比性質(交換比例的內項或外項)

  (交換內項)

  (交換外項)

  (同時交換內項和外項)

  (3)反比性質(交換比的前項、后項):

  (4)合比性質:

  (5)等比性質:

  3、黃金分割

  把線段ab分成兩條線段ac,bc(ac>bc),并且使ac是ab和bc的比例中項,叫做把線段ab黃金分割,點c叫做線段ab的黃金分割點,其中ac=ab0.618ab

  考點二、平行線分線段成比例定理(3~5分)

  三條平行線截兩條直線,所得的對應線段成比例。

  推論:

  (1)平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例。

  逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊。

  (2)平行于三角形一邊且和其他兩邊相交的直線截得的三角形的三邊與原三角形的三邊對應成比例。

  考點三、相似三角形(3~8分)

  1、相似三角形的概念

  對應角相等,對應邊成比例的三角形叫做相似三角形。相似用符號“∽”來表示,讀作“相似于”。相似三角形對應邊的比叫做相似比(或相似系數)。

  2、相似三角形的基本定理

  平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似。

  用數學語言表述如下:

  ∵de∥bc,∴△ade∽△abc

  相似三角形的等價關系:

  (1)反身性:對于任一△abc,都有△abc∽△abc;

  (2)對稱性:若△abc∽△a’b’c’,則△a’b’c’∽△abc

  (3)傳遞性:若△abc∽△a’b’c’,并且△a’b’c’∽△a’’b’’c’’,則△abc∽△a’’b’’c’’。

  3、三角形相似的判定

  (1)三角形相似的判定方法

  ①定義法:對應角相等,對應邊成比例的兩個三角形相似

  ②平行法:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

  ③判定定理1:如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似,可簡述為兩角對應相等,兩三角形相似。

  ④判定定理2:如果一個三角形的`兩條邊和另一個三角形的兩條邊對應相等,并且夾角相等,那么這兩個三角形相似,可簡述為兩邊對應成比例且夾角相等,兩三角形相似。

  ⑤判定定理3:如果一個三角形的三條邊與另一個三角形的三條邊對應成比例,那么這兩個三角形相似,可簡述為三邊對應成比例,兩三角形相似

  (2)直角三角形相似的判定方法

  ①以上各種判定方法均適用

  ②定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似

  ③垂直法:直角三角形被斜邊上的高分成的兩個直角三角形與原三角形相似。

  4、相似三角形的性質

  (1)相似三角形的對應角相等,對應邊成比例

  (2)相似三角形對應高的比、對應中線的比與對應角平分線的比都等于相似比

  (3)相似三角形周長的比等于相似比

  (4)相似三角形面積的比等于相似比的平方。

  5、相似多邊形

  (1)如果兩個邊數相同的多邊形的對應角相等,對應邊成比例,那么這兩個多邊形叫做相似多邊形。相似多邊形對應邊的比叫做相似比(或相似系數)

  (2)相似多邊形的性質

  ①相似多邊形的對應角相等,對應邊成比例

  ②相似多邊形周長的比、對應對角線的比都等于相似比

  ③相似多邊形中的對應三角形相似,相似比等于相似多邊形的相似比

  ④相似多邊形面積的比等于相似比的平方

  6、位似圖形

  如果兩個圖形不僅是相似圖形,而且每組對應點所在直線都經過同一個點,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心,此時的相似比叫做位似比。

  性質:每一組對應點和位似中心在同一直線上,它們到位似中心的距離之比都等于位似比。

  由一個圖形得到它的位似圖形的變換叫做位似變換。利用位似變換可以把一個圖形放大或縮小。

初中數學知識點總結10

  一、數與代數

  1.有理數

  有理數:包括正整數、0和負整數。

  數軸:包括原點、正方向和單位長度。

  相反數:只有符號不同的兩個數叫做互為相反數。

  絕對值:正數的絕對值是其本身,負數的絕對值是它的相反數,0的.絕對值是0。

  2.整式與分式

  整式:包括單項式和多項式。

  分式:包括一般形式和特殊形式。

  代數式:包括單字母、單項式和多項式。

  二、空間與圖形

  1.點、線、面

  點:沒有大小,沒有長度。

  線:沒有寬度,只有長度。

  面:有長度和寬度,沒有高度。

  2.基本圖形

  直線:包括直線、射線、線段。

  角:包括平角、周角和一般的角。

  三角形:包括等邊三角形、等腰三角形和一般三角形。

  四邊形:包括矩形、正方形、梯形和平行四邊形。

  圓:包括圓的性質和圓的定理。

  三、統計與概率

  1.統計

  統計圖:包括扇形統計圖、折線統計圖和條形統計圖。

  統計表:包括簡單統計表和復合統計表。

  數據的收集與整理:包括抽樣調查、全面調查和自主調查。

  2.概率

  隨機事件:包括必然事件、不可能事件和隨機事件。

  概率:包括計算事件發生的概率和隨機事件的概率。

  以上是初中數學知識點總結的主要內容,這些知識點是數學學習的基礎,需要學生熟練掌握和應用。

初中數學知識點總結11

  一元一次方程定義

  通過化簡,只含有一個未知數,且含有未知數的最高次項的次數是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數,且a≠0)。一元一次方程屬于整式方程,即方程兩邊都是整式。

  一元指方程僅含有一個未知數,一次指未知數的次數為1,且未知數的系數不為0。我們將ax+b=0(其中x是未知數,a、b是已知數,并且a≠0)叫一元一次方程的標準形式。這里a是未知數的系數,b是常數,x的次數必須是1。

  即一元一次方程必須同時滿足4個條件:⑴它是等式;⑵分母中不含有未知數;⑶未知數最高次項為1;⑷含未知數的項的系數不為0。

  一元一次方程的五個核心問題

  一、什么是等式?1+1=1是等式嗎?

  表示相等關系的式子叫做等式,等式可分三類:第一類是恒等式,就是用任何允許的數值代替等式中的字母,等式的兩邊總是相等,由數字組成的等式也是恒等式,如2+4=6,a+b=b+a等都是恒等式;第二類是條件等式,也就是方程,這類等式只能取某些數值代替等式中的字母時,等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類是矛盾等式,就是無論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。

  一個等式中,如果等號多于一個,叫做連等式,連等式可以化為一組只含有一個等號的等式。

  等式與代數式不同,等式中含有等號,代數式中不含等號。

  等式有兩個重要性質1)等式的兩邊都加上或減去同一個數或同一個整式,所得結果仍然是一個等式;(2)等式的兩邊都乘以或除以同一個數除數不為零,所得結果仍然是一個等式。

  二、什么是方程,什么是一元一次方程?

  含有未知數的等式叫做方程,如2x-3=8,x+y=7等。判斷一個式子是否是方程,只需看兩點:一是不是等式;二是否含有未知數,兩者缺一不可。

  只含有一個未知數,并且含未知數的式子都是整式,未知數的次數是1,系數不是0的方程叫做一元一次方程。其標準形式是ax+b=0(a不為0,a,b是已知數),值得注意的是1)一個整式方程的"元"和"次"是將這個方程化成最簡形式后才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡后,它實際上是一個一元一次方程。(2)整式方程分母中不含有未知數。判斷是否為整式方程,是不能先將它化簡的如方程x+1/x=2+1/x,因為它的分母中含有未知數x,所以,它不是整式方程。如果將上面的方程進行化簡,則為x=2,這時再去作判斷,將得到錯誤的結論。

  凡是談到次數的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數最少且次數最低的方程。

  三、等式有什么牛掰的基本性質嗎?

  將方程中的某些項改變符號后,從方程的一邊移到另一邊的`變形叫做移項,移項的依據是等式的基本性質1。

  移項時不一定要把含未知數的項移到等式的左邊。如解方程3x-2=4x-5時就可以把含未知數的項移到右邊,而把常數項移到左邊,這樣會顯得簡便些。

  去分母,將未知數的系數化為1,則是依據等式的基本性質2進行的。

  四、等式一定是方程嗎?方程一定是等式嗎?

  等式與方程有很多相同之處。如都是用等號連接的,等號左、右兩邊都是代數式,但它們還是有區別的。方程僅是含有未知數的等式,是等式中的特例。就是說,等式包含方程;反過來,方程并不包含所有的等式。如,13+5=18,18-13=5都屬于等式,但它們并不是方程。因此,等式一定是方程的說法是不對的。

  五、"解方程"與"方程的解"是一回事兒嗎?

  方程的解是使方程左、右兩邊相等的未知數的取值。而解方程是求方程的解或判斷方程無解的過程。即方程的解是結果,而解方程是一個過程。方程的解中的"解"是名詞,而解方程中的"解"是動詞,二者不能混淆。

初中數學知識點總結12

  知識點總結

  1.定義:兩組對邊分別平行的四邊形叫平行四邊形

  2.平行四邊形的性質

  (1)平行四邊形的對邊平行且相等;

  (2)平行四邊形的鄰角互補,對角相等;

  (3)平行四邊形的對角線互相平分;

  3.平行四邊形的判定

  平行四邊形是幾何中一個重要內容,如何根據平行四邊形的性質,判定一個四邊形是平行四邊形是個重點,下面就對平行四邊形的五種判定方法,進行劃分:

  第一類:與四邊形的對邊有關

  (1)兩組對邊分別平行的四邊形是平行四邊形;

  (2)兩組對邊分別相等的四邊形是平行四邊形;

  (3)一組對邊平行且相等的四邊形是平行四邊形;

  第二類:與四邊形的對角有關

  (4)兩組對角分別相等的四邊形是平行四邊形;

  第三類:與四邊形的`對角線有關

  (5)對角線互相平分的四邊形是平行四邊形

  常見考法

  (1)利用平行四邊形的性質,求角度、線段長、周長;

  (2)求平行四邊形某邊的取值范圍;

  (3)考查一些綜合計算問題;

  (4)利用平行四邊形性質證明角相等、線段相等和直線平行;

  (5)利用判定定理證明四邊形是平行四邊形。

  誤區提醒

  (1)平行四邊形的性質較多,易把對角線互相平分,錯記成對角線相等;

  (2)“一組對邊平行且相等的四邊形是平行四邊形”錯記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個等腰梯形。

初中數學知識點總結13

  1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

  2、菱形的性質:⑴矩形具有平行四邊形的一切性質;

  ⑵菱形的四條邊都相等;

  ⑶菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。

  ⑷菱形是軸對稱圖形。

  提示:利用菱形的性質可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個全等的直角三角形,由此又可與勾股定理聯系,可得對角線與邊之間的關系,即邊長的平方等于對角線一半的平方和。

  3、因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  4、因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④因式分解與整式乘法的關系:m(a+b+c)

  5、公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  6、公因式確定方法:①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。

  7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫成積的形式。

  8、平方根表示法:一個非負數a的平方根記作,讀作正負根號a。a叫被開方數。

  9、中被開方數的.取值范圍:被開方數a≥0

  10、平方根性質:①一個正數的平方根有兩個,它們互為相反數。②0的平方根是它本身0。③負數沒有平方根開平方;求一個數的平方根的運算,叫做開平方。

  11、平方根與算術平方根區別:定義不同、表示方法不同、個數不同、取值范圍不同。

  12、聯系:二者之間存在著從屬關系;存在條件相同;0的算術平方根與平方根都是0

  13、含根號式子的意義:表示a的平方根,表示a的算術平方根,表示a的負的平方根。

  14、求正數a的算術平方根的方法;

  完全平方數類型:①想誰的平方是數a。②所以a的平方根是多少。③用式子表示。

  求正數a的算術平方根,只需找出平方后等于a的正數。

初中數學知識點總結14

  1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

  2、菱形的性質:

  ⑴矩形具有平行四邊形的一切性質;

  ⑵菱形的四條邊都相等;

  ⑶菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。

  ⑷菱形是軸對稱圖形。

  提示:利用菱形的性質可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個全等的直角三角形,由此又可與勾股定理聯系,可得對角線與邊之間的關系,即邊長的平方等于對角線一半的平方和。

  3、因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  4、因式分解要素:

  ①結果必須是整式

  ②結果必須是積的形式

  ③結果是等式

  ④因式分解與整式乘法的關系:m(a+b+c)

  5、公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  6、公因式確定方法:

  ①系數是整數時取各項最大公約數。

  ②相同字母取最低次冪

  ③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。

  7、提取公因式步驟:

  ①確定公因式。

  ②確定商式

  ③公因式與商式寫成積的形式。

  8、平方根表示法:一個非負數a的平方根記作,讀作正負根號a。a叫被開方數。

  9、中被開方數的取值范圍:被開方數a≥0

  10、平方根性質:

  ①一個正數的平方根有兩個,它們互為相反數。

  ②0的平方根是它本身0。

  ③負數沒有平方根開平方;求一個數的平方根的運算,叫做開平方。

  11、平方根與算術平方根區別:定義不同、表示方法不同、個數不同、取值范圍不同。

  12、聯系:二者之間存在著從屬關系;存在條件相同;0的算術平方根與平方根都是0

  13、含根號式子的意義:表示a的'平方根,表示a的算術平方根,表示a的負的平方根。

  14、求正數a的算術平方根的方法;

  完全平方數類型:

  ①想誰的平方是數a。

  ②所以a的平方根是多少。

  ③用式子表示。

  求正數a的算術平方根,只需找出平方后等于a的正數。

初中數學知識點總結15

  第一章有理數

  一、正數和負數

  ⒈正數和負數的概念

  負數:比0小的數正數:比0大的數0既不是正數,也不是負數

  注意:①字母a可以表示任意數,當a表示正數時,—a是負數;當a表示負數時,—a是正數;當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)

  ②正數有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數的符號是正號。

  2、具有相反意義的量

  若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:

  零上8℃表示為:+8℃;零下8℃表示為:—8℃

  支出與收入;增加與減少;盈利與虧損;北與南;東與西;漲與跌;增長與降低等等是相對相反量,它們計數:比原先多了的數,增加增長了的數一般記為正數;相反,比原先少了的數,減少降低了的數一般記為負數。 3.0表示的意義

  ⑴0表示“沒有”,如教室里有0個人,就是說教室里沒有人;

  ⑵0是正數和負數的分界線,0既不是正數,也不是負數。

  二、有理數

  1、有理數的概念

  ⑴正整數、0、負整數統稱為整數(0和正整數統稱為自然數)

  ⑵正分數和負分數統稱為分數

  ⑶正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。

  理解:只有能化成分數的數才是有理數。①π是無限不循環小數,不能寫成分數形式,不是有理數。②有限小數和無限循環小數都可化成分數,都是有理數。

  注意:引入負數以后,奇數和偶數的范圍也擴大了,像—2,—4,—6,—8?也是偶數,—1,—3,—5?也是奇數。

  2、(1)凡能寫成q(p,q為整數且p?0)形式的數,都是有理數。正整數、0、負整數統稱整數;正分數、負p

  分數統稱分數;整數和分數統稱有理數。注意:0即不是正數,也不是負數;—a不一定是負數,+a也不一定是正數;?不是有理數;

  學霸分享的數學復習技巧

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。

  所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

  經過上面的'訓練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。

  2、研究每題都考什么

  數學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰術,而是要通過一題聯想到很多題。

  3、錯一次反思一次

  每次業及考試或多或少會發生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現。因此平時注意把錯題記下來。

  學生若能將每次考試或練習中出現的錯誤記錄下來分析,并盡力保證在下次考試時不發生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。

  4、分析試卷總結經驗

  每次考試結束試卷發下來,要認真分析得失,總結經驗教訓。特別是將試卷中出現的錯誤進行分類。

  數學解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構方法,并將其中的一些分配給一個或多個多項式正整數冪的和形式。通過配方解決數學問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數學中不斷變形的重要方法,其應用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數的極值和解析表達式。

  2、因式分解法

  因式分解是將多項式轉換為幾個積分產品的乘積。分解是恒定變形的基礎。除了引入中學教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數等等。

  3、換元法

  替代方法是數學中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數替換原始公式的一部分或重新構建原始公式可以更簡單,更容易解決。

  4、判別式法與韋達定理

  一元二次方程ax2+ bx+ c=0(a、 b、 c屬于R,a≠0)根的判別,= b2—4 ac,不僅用來確定根的性質,還作為一個問題解決方法,代數變形,求解方程(組),求解不等式,研究函數,甚至幾何以及三角函數都有非常廣泛的應用。

  韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個數的和和乘積的簡單應用并尋找這兩個數,也可以找到根的對稱函數并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關的問題等,具有非常廣泛的應用。

  5、待定系數法

  在解決數學問題時,如果我們首先判斷我們所尋找的結果具有一定的形式,其中包含某些未決的系數,然后根據問題的條件列出未確定系數的方程,最后找到未確定系數的值或這些待定系數之間的關系。為了解決數學問題,這種問題解決方法被稱為待定系數法。它是中學數學中常用的方法之一。

  6、構造法

  在解決問題時,我們通常通過分析條件和結論來使用這些方法來構建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數,一個等價的命題等,架起連接條件和結論的橋梁。為了解決這個問題,這種解決問題的數學方法,我們稱之為構造方法。運用結構方法解決問題可以使代數,三角形,幾何等數學知識相互滲透,有助于解決問題。

  數學經常遇到的問題解答

  1、要提高數學成績首先要做什么?

  這一點,是很多學生所關注的,要提高數學成績,首先就應該從基礎知識學起。不少同學覺得基礎知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎不牢的表現,因此要提高數學成績先要把基礎夯實。

  2、基礎不好怎么學好數學?

  對于基礎差的同學來說,課本是就是學好數學的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學活用,把課本的知識學透有兩個好處,第一,強化基礎;第二,提高得分能力。

  3、是否要采用題海戰術?

  方法君曾不止一次提到了“題海戰術”,題海戰術究竟可不可取呢?“題海戰術”其實也是一種學習方法,但很多學生只知道做題,不懂得總結,體現不出任何的學習效果。因此在做題后要總結至關重要,只有認真總結才能不斷積累做題經驗,這樣才能取得理想成績。

  4、做題總是粗心怎么辦?

  很多學生成績不好,會說自己是因為粗心導致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎知識不牢、沒有清晰的解題思路、計算能力不強。因此在平時的學習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學習弱點,所以,要告訴自己,高中數學沒有“粗心”只有“不用心”。

  為什么要學習數學

  作為一門普及度極廣的學科,數學在人類文明的發展史上一直占據著重要的地位。雖然很多人可能會對數學產生排斥,認為它枯燥無味,但事實上,數學是所有學科的基石之一,對我們日常生活以及未來的職業發展有著重大影響。下面我將詳細闡述學習數學的重要性。

  首先,數學可以幫助我們提高邏輯思維能力。數學的學科性質使我們在學習的過程中時時刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機會。通過長期的學習和練習,我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復雜問題時更能得心應手。

  其次,數學在現代科技中起著至關重要的作用。在計算機科學、物理學、經濟學、工程學等領域,數學可以幫助我們建立模型、分析數據、預測趨勢,并且可以在實際應用中優化和改進。例如,在人工智能領域,深度學習技術所涉及的數學概念包括線性代數、微積分和概率論等,如果沒有深厚的數學基礎,很難理解和應用這些技術。同時,在工程學領域,許多機械、電子、化工等產品的設計和制造過程,也需要運用到數學知識,因此學習數學可以使我們更好地參與到現代科技的發展中。

  除此之外,數學也是一種普遍使用的語言,許多學科和領域都使用數學語言進行表達和交流。例如,在自然科學領域,生物學、化學、物理學等學科都使用數學語言來描述自然世界的規律和現象。在社會科學和商科領域,經濟學和金融學運用的數學概念,如微積分、線性代數和統計學等,使得我們能夠更好地理解經濟和財務數據,并進行決策。因此,學習數學可以讓我們更好地理解、溝通和交流各個領域的知識。

  最后,學習數學也可以為我們的職業發展帶來廣泛的機遇和發展空間。在許多領域,數學專業的畢業生都有很廣泛的就業機會,如金融界、數據科學、研究機構、教育等。數學專業的人才,不只會提供理論支持,同時也能夠解決現實中具體的問題,使其在各自領域脫穎而出。

【初中數學知識點總結】相關文章:

初中數學的知識點總結09-19

初中數學的知識點總結03-11

初中數學必考知識點總結02-22

初中數學代數知識點總結03-06

初中數學必備知識點總結03-11

數學初中知識點總結03-27

初中數學知識點總結05-30

初中數學圓的知識點總結06-07

初中數學知識點總結10-24

初中數學函數知識點總結04-08