(優秀)初中數學知識點總結15篇
總結是對取得的成績、存在的問題及得到的經驗和教訓等方面情況進行評價與描述的一種書面材料,它可以促使我們思考,不妨坐下來好好寫寫總結吧。你想知道總結怎么寫嗎?下面是小編為大家整理的初中數學知識點總結,僅供參考,希望能夠幫助到大家。
初中數學知識點總結1
一、關于初高中數學成績分化原因的分析
1、環境與心理的變化。
對高一新生來講,環境可以說是全新的,新教材、新同學、新教師、新集體……學生有一個由陌生到熟悉的適應過程。另外,經過緊張的中考復習,考取了自己理想的高中,必有些學生產生“松口氣”想法,入學后無緊迫感。也有些學生有畏懼心理,他們在入學前,就耳聞高中數學很難學,高中數學課一開始也確是些難理解的抽象概念,如映射、集合、異面直線等,使他們從開始就處于怵頭無趣的被動局面。以上這些因素都嚴重影響高一新生的學習質量。
2、教材的變化。
首先,初中數學教材內容通俗具體,多為常量,題型少而簡單;而高中數學內容抽象,多研究變量、字母,不僅注重計算,而且還注重理論分析,這與初中相比增加了難度。
其次,由于近幾年教材內容的調整,雖然初高中教材都降低了難度,但相比之下,初中降低的幅度大,而高中由于受高考的限制,教師都不敢降低難度,造成了高中數學實際難度沒有降低。因此,從一定意義上講,調整后的教材不僅沒有縮小初高中教材內容的難度差距,反而加大了。
3、課時的變化。
在初中,由于內容少,題型簡單,課時較充足。因此,課容量小,進度慢,對重難點內容均有充足時間反復強調,對各類習題的解法,教師有時間進行舉例示范,學生也有足夠時間進行鞏固。而到高中,由于知識點增多,靈活性加大和新工時制實行,使課時減少,課容量增大,進度加快,對重難點內容沒有更多的時間強調,對各類型題也不可能講全講細和鞏固強化。這也使高一新生開始不適應高中學習而影響成績的提高。
4、學法的變化。
在初中,教師講得細,類型歸納得全,練得熟,考試時,學生只要記準概念、公式及教師所講例題類型,一般均可對號入座取得好成績。因此,學生習慣于圍著教師轉,不注重獨立思考和對規律的歸納總結。到高中,由于內容多時間少,教師不可能把知識應用形式和題型講全講細,只能選講一些具有典型性的題目,以落實“三基”培養能力。因此,高中數學學習要求學生要勤于思考,善于歸納總結規律,掌握數學思想方法,做到舉一反三,觸類旁通。然而,剛入學的高一新生,往往繼續沿用初中學法,致使學習困難較多,完成當天作業都很困難,更沒有預習、復習及總結等自我消化自我調整的時間。這顯然不利于良好學法的形成和學習質量的提高。
二、搞好初高中銜接所采取的主要措施
1、做好準備工作,為搞好銜接打好基礎。
、俑愫萌雽W教育。這是搞好銜接的基礎工作,也是首要工作。通過入學教育提高學生對初高中銜接重要性的認識,增強緊迫感,消除松懈情緒,初步了解高中數學學習的特點,為其它措施的落實奠定基礎這里主要做好四項工作:一是給學生講清高一數學在整個中學數學中所占的位置和作用;二是結合實例,采取與初中對比的方法,給學生講清高中數學內容體系特點和課堂教學特點;三是結合實例給學生講明初高中數學在學法上存在的本質區別,并向學生介紹一些優秀學法,指出注意事項;四是請高年級學生談體會講感受,引導學生少走彎路,盡快適應高中學習。
②摸清底數,規劃教學。
為了搞好初高中銜接,教師首先要摸清學生的學習基礎,然后以此來規劃自己的教學和落實教學要求,以提高教學的針對性。在教學實際中,我們一方面通過進行摸底測試和對入學成績的分析,了解學生的基礎;另一方面,認真學習和比較初高中教學大綱和教材,以全面了解初高中數學知識體系,找出初高中知識的銜接點、區別點和需要鋪路搭橋的知識點,以使備課和講課更符合學生實際,更具有針對性。
2、優化課堂教學環節,搞好初高中銜接。
、倭⒆阌诖缶V和教材,尊重學生實際,實行層次教學。高一數學中有許多難理解和掌握的知識點,如集合、映射等,對高一新生來講確實困難較大。因此,在教學中,應從高一學生實際出發,采勸低起點、小梯度、多訓練、分層次”的方法,將教學目標分解成若干遞進層次逐層落實。在速度上,放慢起始進度,逐步加快教學節奏。在知識導入上,多由實例和已知引入。在知識落實上,先落實“死”課本,后變通延伸用活課本。在難點知識講解上,從學生理解和掌握的實際出發,對教材作必要層次處理和知識鋪墊,并對知識的理解要點和應用注意點作必要總結及舉例說明。
②重視新舊知識的聯系與區別,建立知識網絡。初高中數學有很多銜接知識點,如函數概念、平面幾何與立體幾何相關知識等,到高中,它們有的加深了,有的'研究范圍擴大了,有些在初中成立的結論到高中可能不成立。因此,在講授新知識時,我們有意引導學生聯系舊知識,復習和區別舊知識,特別注重對那些易錯易混的知識加以分析、比較和區別。這樣可達到溫故知新、溫故而探新的效果。
、壑匾曊故局R的形成過程和方法探索過程,培養學生創造能力。高中數學較初中抽象性強,應用靈活,這就要求學生對知識理解要透,應用要活,不能只停留在對知識結論的死記硬套上,這就要求教師應向學生展示新知識和新解法的產生背景、形成和探索過程,不僅使學生掌握知識和方法的本質,提高應用的靈活性,而且還使學生學會如何質疑和解疑的思想方法,促進創造性思維能力的提高。
④重視培養學生自我反思自我總結的良好習慣,提高學習的自覺性。高中數學概括性強,題目靈活多變,只靠課上聽懂是不夠的,需要課后進行認真消化,認真總結歸納。這就要求學生應具備善于自我反思和自我總結的能力。為此,我們在教學中,抓住時機積極培養。在單元結束時,幫助學生進行自我章節小結,在解題后,積極引導學生反思:思解題思路和步驟,思一題多解和一題多變,思解題方法和解題規律的總結。由此培養學生善于進行自我反思的習慣,擴大知識和方法的應用范圍,提高學習效率。
、葜匾晫n}教學。利用專題教學,集中精力攻克難點,強化重點和彌補弱點,系統歸納總結某一類問題的前后知識、應用形式、解決方法和解題規律。并借此機會對學生進行學法的指點,有意滲透數學思想方法。
3、加強學法指導。
高中數學教學要把對學生加強學法指導作為教學的重要任務之一。指導以培養學習能力為重點,狠抓學習基本環節,如“怎樣預習”、“怎樣聽課”等等。
具體措施有三:一是寓學法指導于知識講解、作業講評、試卷分析等教學活動之中,這種形式貼近學生學習實際,易被學生接受;二是舉辦系列講座,介紹學習方法;三是定期進行學法交流,同學間互相取長補短,共同提高。
4、優化教育管理環節,促進初高中良好銜接。
①重視運用情感和成功原理,喚起學生學好數學的熱情。搞好初高中銜接,除了優化教學環節外,還應充分發揮情感和心理的積極作用。我們在高一教學中,注意運用情感和成功原理,調動學生學習熱情,培養學習數學興趣。學生學不好數學,少責怪學生,要多找自己的原因。要深入學生當中,從各方面了解關心他們,特別是差生,幫助他們解決思想、學習及生活上存在的問題。給他們多講數學在各行各業廣泛應用,講祖國四化建設需要大批懂數學的專家學者;講愛因斯坦在初中一次數學竟沒有考及格,但他沒有氣餒,終于成了一名偉大科學家,華羅庚在學生時代奮發圖強,終于在數學研究中做出了卓越貢獻,等等。使學生提高認識,增強學好數學的信心。在提問和布置作業時,從學生實際出發,多給學生創設成功的機會,以體會成功的喜悅,激發學習熱情。
②重視培養學生正確對待困難和挫折的良好心理素質。由于高中數學的特點,決定了高一學生在學習中的困難大挫折多。為此,我們在教學中注意培養學生正確對待困難和挫折的良好心理素質,使他們善于在失敗面前,能冷靜地總結教訓,振作精神,主動調整自己的學習,并努力爭取今后的勝利。平時多注意觀察學生情緒變化,開展心理咨詢,做好個別學生思想工作。
③電視知識的反饋和落實。通過建立多渠道的反饋途徑,及時收集學生對知識的掌握情況和對教學的意見,為及時矯上學生的錯誤,調整教學,提高教學針對性提供依據。知識落實的思路為:以落實“三基”為中心,實行分層落實,做到提優補差。主要措施是:平時練習層次化,單元結束考查制度化,做到章節會,單元清。
初中數學知識點總結2
銳角三角函數定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數。
正弦(sin):對邊比斜邊,即sinA=a/c;
余弦(cos):鄰邊比斜邊,即cosA=b/c;
正切(tan):對邊比鄰邊,即tanA=a/b;
余切(cot):鄰邊比對邊,即cotA=b/a;
正割(sec):斜邊比鄰邊,即secA=c/b;
余割(csc):斜邊比對邊,即cscA=c/a。
三角函數關系
1、互余角的關系
sin(90°—α)=cosα,cos(90°—α)=sinα,tan(90°—α)=cotα,cot(90°—α)=tanα。
2、平方關系
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
3、積的關系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒數關系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
兩角和差公式
sin(A+B)= sinAcosB+cosAsinB
sin(A—B)= sinAcosB—cosAsinB
cos(A+B)= cosAcosB—sinAsinB
cos(A—B)= cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1—tanAtanB)
tan(A—B)=(tanA—tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB—1)/(cotB+cotA)
cot(A—B)=(cotAcotB+1)/(cotB—cotA)
1、不在同一直線上的三點確定一個圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。
3、圓是以圓心為對稱中心的中心對稱圖形。
4、圓是定點的距離等于定長的點的集合
5、圓的內部可以看作是圓心的距離小于半徑的點的集合。
6、圓的外部可以看作是圓心的距離大于半徑的點的`集合。
7、同圓或等圓的半徑相等。
8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。
10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11、定理圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角。
13、切線的判定定理經過半徑的外端并且垂直于這條半徑的直線是圓的切線。
14、切線的性質定理圓的切線垂直于經過切點的半徑。
15、推論1經過圓心且垂直于切線的直線必經過切點。
初中數學知識點總結3
一、在創新中培養學生的歸納意?R
在初中數學教學中,重點是對學生的創新精神和實踐能力的培養,體現出現代素質教育。學生創新能力的培養在學習中占據非常重要的作用,在創新中學生可以鞏固自身所學的知識,使數學知識在自己的頭腦中根深蒂固,各類知識點在學生的頭腦中形成清晰的框架,有助于學生歸納意識的培養。歸納意識的培養,可以減輕學生的學習負擔,提升學生對知識的理解能力。
初中生在學習數學的環節中,常常會接觸到大量的圖像,在數學學習中,老師應該鼓勵學生大膽創新,在創新環節中完成對知識點的歸納。數學學習并不死板,不僅僅學習教科書上的知識,還應該學習書本以外的知識,從而創新自己的思維。例如在進行函數的學習中,老師可以讓學生繪制函數圖像,對函數進行分類討論,從而掌握遞增函數和遞減函數的定義,在分類討論后,學生結合圖像進行歸納。在數學教學中,老師不僅僅要重視書本上的邏輯內容,而且在把握邏輯內容的基礎上,將圖像和數學知識有機結合起來,使學生可以大膽創新。
很多學生在數學學習中存在困難,認為數學的學習就是解答大量的難題,他們在大量的題海戰術后不善于歸納,導致數學學習的效率不高。
二、在交流中歸納知識點
在數學學習中,如果學生只是自己探究,那么在學習中不會得到靈感。數學學習不僅僅要求學生具有認真的鉆研態度,而且也需要老師幫助學生養成歸納的意識。溝通和交流不僅僅在語言的學習中發揮非常重要的作用,而且在數學學習中同樣非常重要。學生在解答數學問題中,常常會遇到一些問題,學生自己探究會陷入到死胡同中,需要老師和同學的幫助才能進一步完成。
為了切實在初中數學教學中培養學生的歸納意識,老師可以將班級內的學生分成幾個不同的小組,組內的同學可以通過合作的方式,對知識點進行歸納,在數學的學習中更加變通,將數學這門學科應用到生活中。
例如,在進行二次函數的.學習中,老師可以將學生分成不同的小組,留給學生充足的時間,讓他們互相幫助,在溝通中對知識點進行歸納。學生很快就能得到結論,如果函數有兩個解,那么函數與數軸會有兩個交點,如果方程只有一個解,那么函數與數軸只有一個交點,如果方程沒有解,那么函數與數軸沒有交點。學生通過分組討論的方式得到結論,通過歸納,學生對二次函數知識點的印象非常深刻。
三、學會正確歸納
在數學學習中,歸納思想非常重要,數學這門學科的知識非常細碎,是一門系統性很強的學科。數學知識錯綜復雜,很多學生在學習數學中力不從心,掌握合理的歸納方式,可以切實提升學生的數學成績。初中生的思維還不是特別完善,在進行數學學習環節中,對知識點進行合理的歸納,是每位老師應該采取的方法。如果學生不懂得歸納,那么在數學考試中,學生會將知識點混淆。為了提升學生的歸納能力,老師在課堂上應該將一些容易混淆和容易出現錯誤的習題讓學生總結。
例如,在學習圓和直線這部分內容中,老師都會將重點內容,圓和圓的位置關系,直線和圓的位置關系進行重點分析。老師可以借助一些參考書目和資料,總結一些相似的題目,讓學生在課堂上解答這些題目,使學生對這部分知識點進行總結,從而加深對這部分知識的理解。歸納思想在數學學習中應用非常多,在進行初中數學教學環節中,學生應該花更多的時間進行歸納。
在進行初中數學的學習中,學生歸納意識的養成可以完善學生的數學思維,學生學會歸納,在學習中就會如魚得水,在考試中取得好成績。
四、在反思中完成知識點的歸納
初中數學知識點總結4
定義
對應角相等,對應邊成比例的兩個三角形叫做相似三角形
比值與比的概念
比值是一個具體的數字如:AB/EF=2
而比不是一個具體的數字如:AB/EF=2:1判定方法
證兩個相似三角形應該把表示對應頂點的字母寫在對應的位置上。如果是文字語言的“△ABC與△DEF相似”,那么就說明這兩個三角形的對應頂點可能沒有寫在對應的位置上,而如果是符號語言的“△ABC∽△DEF”,那么就說明這兩個三角形的對應頂點寫在了對應的位置上。
方法一(預備定理)
平行于三角形一邊的直線截其它兩邊所在的直線,截得的三角形與原三角形相似。(這是相似三角形判定的'定理,是以下判定方法證明的基礎。這個引理的證明方法需要平行線與線段成比例的證明)
方法二
如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似。
方法三
如果兩個三角形的兩組對應邊成比例,并且相應的夾角相等,
那么這兩個三角形相似
方法四
如果兩個三角形的三組對應邊成比例,那么這兩個三角形相似
方法五(定義)
對應角相等,對應邊成比例的兩個三角形叫做相似三角形
三個基本型
Z型A型反A型
方法六
兩個直角三角形中,斜邊與直角邊對應成比例,那么兩三角形相似。一定相似的三角形
1、兩個全等的三角形
(全等三角形是特殊的相似三角形,相似比為1:1)
2、兩個等腰三角形
(兩個等腰三角形,如果其中的任意一個頂角或底角相等,那么這兩個等腰三角形相似。)
3、兩個等邊三角形
(兩個等邊三角形,三角都是60度,且邊邊相等,所以相似)
4、直角三角形中由斜邊的高形成的三個三角形(母子三角形)
圖形的學習需要大家對于知識的詳細了解和滲透,而不是一帶而過。
初中數學知識點總結5
第一章:勾股定理
1.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么a的平方加上b的平方等于c的平方。
2.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么a的平方加上b的平方等于c的平方。
3.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么兩條直角邊長的平方和等于斜邊長的平方。
4.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么a、b、c三者之間的關系是a的平方加上b的平方等于c的平方。
第二章:四邊形
1.平行四邊形:兩組對邊分別平行的四邊形叫做平行四邊形。
2.菱形:有一組鄰邊相等的平行四邊形叫做菱形。
3.矩形:有一個角是直角的平行四邊形叫做矩形。
4.正方形:有一組鄰邊相等的矩形叫做正方形。
5.平行四邊形的性質:對邊平行且相等;對角相等,且互補;對角線互相平分。
6.菱形的性質:四邊相等;對角線互相垂直,且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半。
7.矩形的性質:矩形的四個角都是直角;矩形的對角線相等。
8.正方形的性質:四個角都是直角,四條邊都相等;對角線相等,且互相垂直平分,每條對角線平分一組對角;正方形被兩條對角線分成四個全等的直角三角形;正方形是特殊的長方形,所以正方形具有矩形的一切性質。
第三章:一次函數
1.一次函數:如果所給函數表達式是正比例函數,那么它經過原點(0,0);如果所給函數表達式是一次函數(斜截式),那么它經過原點(0,0)。
2.正比例函數:如果y=kx(k是常數,且k≠0),那么y叫做x的'正比例函數。
3.一次函數:如果正比例函數y=kx(k是常數,且k≠0)的圖像經過第一、二、三象限,那么一次函數y=kx+b(k,b是常數,k≠0)的圖像也經過第一、二、三象限。
4.一次函數:如果正比例函數y=kx(k是常數,且k≠0)的圖像經過第一、二、三象限,那么一次函數y=kx+b(k,b是常數,k≠0)的圖像也經過第一、二、三象限。
5.正比例函數:如果y=kx(k是常數,且k≠0),那么y叫做x的正比例函數。
6.一次函數:如果正比例函數y=kx(k是常數,且k≠0)的圖像經過第一、二、三象限,那么一次函數y=kx+b(k,b是常數,k≠0)的圖像也經過第一、二、三象限。
7.正比例函數:如果y=kx(k是常數,且k≠0),那么y叫做x的正比例函數。
8.一次函數:如果正比例函數y=kx(k是常數,且k≠0)的圖像經過第一、二、三象限,那么一次函數y=kx+b(k,b是常數,k≠0)的圖像也經過第一、二、三象限。
9.正比例函數:如果y=kx(k是常數,且k≠0),那么y叫做x的正比例函數。
10.一次函數:如果正比例函數y=kx(k是常數,且k≠0)的圖像經過第一、二、三象限,那么一次函數y=kx+b(k,b是常數,k≠0)的圖像也經過第一、二、三象限。
初中數學知識點總結6
1、相交線
對頂角相等。
過一點有且只有一條直線與已知直線垂直。
連接直線外一點與直線上各點的所有線段中,垂線段最短(簡單說成:垂線段最短)。
2、平行線
經過直線外一點,有且只有一條直線與這條直線平行。
如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
直線平行的.條件:
兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果內錯角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果同旁內角互補,那么兩直線平行。
3、平行線的性質
兩條平行線被第三條直線所截,同位角相等。
兩條平行線被第三條直線所截,內錯角相等。
兩條平行線被第三條直線所截,同旁內角互補。
判斷一件事情的語句,叫做命題。
初中數學知識點總結7
一.圓的定義
1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。
2.平面上一條線段,繞它的一端旋轉360°,留下的軌跡叫圓。
二.圓心
1.定義1中的定點為圓心。
2.定義2中繞的那一端的端點為圓心。
3.圓任意兩條對稱軸的交點為圓心。
4.垂直于圓內任意一條弦且兩個端點在圓上的線段的二分點為圓心。
注:圓心一般用字母O表示
5.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
6.半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
7.圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。
8.圓的半徑或直徑決定圓的大小,圓心決定圓的位置。
三.圓的基本性質
1.圓的對稱性
(1)圓是軸對稱圖形,它的對稱軸是直徑所在的直線。
(2)圓是中心對稱圖形,它的對稱中心是圓心。
(3)圓是旋轉對稱圖形。
2.垂徑定理
(1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。
平分弧的直徑,垂直平分弧所對的弦。
3.圓心角的度數等于它所對弧的度數。圓周角的度數等于它所對弧度數的一半。
(1)同弧所對的圓周角相等。
(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。
4.在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。
5.夾在平行線間的兩條弧相等。
(1)過兩點的圓的圓心一定在兩點間連線段的'中垂線上。
(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。
(直角三角形的外心就是斜邊的中點。)
6.直線與圓的位置關系。d表示圓心到直線的距離,r表示圓的半徑。
直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;直線與圓沒有交點,直線與圓相離。
四.圓和圓
1.兩個圓沒有公共點且每個圓的點都在另一個圓的外部時,叫做這兩個圓的外離。
2.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的外部,叫做兩個圓的外切。
3.兩個圓有兩個交點,叫做兩個圓的相交。
4.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的內部,叫做兩個圓的內切。
5.兩個圓沒有公共點且每個圓的點都在另一個圓的內部時,叫做這兩個圓的內含。
五.正多邊形和圓
1.正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。
2.正多邊形與圓的關系:
(1)將一個圓n(n≥3)等分(可以借助量角器),依次連結各等分點所得的多邊形是這個圓的內接正多邊形。
(2)這個圓是這個正多邊形的外接圓。
初中數學知識點總結8
初中數學知識點總結:中位線
知識要點:梯形的中位線平行于兩底,并且等于兩底和的一半。
1.中位線概念
(1)三角形中位線定義:連接三角形兩邊中點的線段叫做三角形的中位線。
(2)梯形中位線定義:連結梯形兩腰中點的線段叫做梯形的中位線。
注意:
(1)要把三角形的中位線與三角形的中線區分開。三角形中線是連結一頂點和它對邊的中點,而三角形中位線是連結三角形兩邊中點的線段。
(2)梯形的中位線是連結兩腰中點的線段而不是連結兩底中點的線段。
(3)兩個中位線定義間的聯系:可以把三角形看成是上底為零時的梯形,這時梯形的中位線就變成三角形的中位線。
2.中位線定理
(1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.
三角形兩邊中點的連線(中位線)平行于第BC邊,且等于第三邊的一半。
知識要領總結:三角形的中位線所構成的小三角形(中點三角形)面積是原三角形面積的四分之一。
初中數學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規定:
①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
、巯笙薜囊幎ǎ河疑蠟榈谝幌笙蕖⒆笊蠟榈诙笙蕖⒆笙聻榈谌笙蕖⒂蚁聻榈谒南笙。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
初中數學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的.正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
初中數學知識點:點的坐標的性質
下面是對數學中點的坐標的性質知識學習,同學們認真看看哦。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的。
初中數學知識點:因式分解的一般步驟
關于數學中因式分解的一般步驟內容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
初中數學知識點:因式分解
下面是對數學中因式分解內容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數是整數時取各項最大公約數。②相同字母取最低次冪③系數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數項注意查項數
、垭p重括號化成單括號
④結果按數單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
、奘醉椮撎柗爬ㄌ柾
、呃ㄌ杻韧愴椇喜ⅰ
通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。
初中數學知識點總結9
∴當x1時函數取得最大值,且ymax(1)2(1)13例4、已知函數f(x)x22(a1)x2
4],求實數a的取值(1)若函數f(x)的遞減區間是(,4]上是減函數,求實數a的取值范圍(2)若函數f(x)在區間(,分析:二次函數的單調區間是由其開口方向及對稱軸決定的,要分清函數在區間A上是單調函數及單調區間是A的區別與聯系
解:(1)f(x)的對稱軸是x可得函數圖像開口向上
2(a1)21a,且二次項系數為1>0
1a]∴f(x)的單調減區間為(,∴依題設條件可得1a4,解得a3
4]上是減函數(2)∵f(x)在區間(,4]是遞減區間(,1a]的子區間∴(,∴1a4,解得a3
例5、函數f(x)x2bx2,滿足:f(3x)f(3x)
。1)求方程f(x)0的兩根x1,x2的和(2)比較f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函數圖像的對稱軸為x(3x)(3x)23
b3可得b62f(x)x26x2(x3)211
而f(x)的圖像與x軸交點(x1,0)、(x2,0)關于對稱軸x3對稱
x1x223,可得x1x26
第三章第32頁由二次項系數為1>0,可知拋物線開口向上又134,132,431
∴依二次函數的對稱性及單調性可f(4)f(1)f(1)(III)課后作業練習六
。á簦┙虒W后記:
第三章第33頁
擴展閱讀:初中數學函數知識點歸納
學大教育
初中數學函數板塊的知識點總結與歸類學習方法
初中數學知識大綱中,函數知識占了很大的知識體系比例,學好了函數,掌握了函數的基本性質及其應用,真正精通了函數的.每一個模塊知識,會做每一類函數題型,就讀于中考中數學成功了一大半,數學成績自然上高峰,同時,函數的思想是學好其他理科類學科的基礎。初中數學從性質上分,可以分為:一次函數、反比例函數、二次函數和銳角三角函數,下面介紹各類函數的定義、基本性質、函數圖象及函數應用思維方式方法。
一、一次函數
1.定義:在定義中應注意的問題y=kx+b中,k、b為常數,且k≠0,x的指數一定為1。2.圖象及其性質(1)形狀、直線
初中數學知識點總結10
關鍵詞:數學;總復習;初中;方法
中圖分類號:G633。6文獻標識碼:B文章編號:1672—1578(20xx)12—0217—01
初中數學是義務教育階段一門主要課程,它是進一步學習工作的基礎。因此,進行初三數學總復習,使學生具有一定的數學素質,合格畢業,對于提高全民族素質,為培養改革人才奠定基礎是十分必要的。本文將要探討的就是搞好初三數學總復習的一些體會。
1、明確總復習的目的
中考是總結性的檢驗,考試成績也必然會促使我們認真地總結檢查自己的教學工作,改進教學方法,提高教學質量。因此,中考的需要是初三總復習的重要目的,但不是唯一的目的。在復習方面要從單純面向升學的需要,轉變為面向學生終身學習的需要。通過初三數學總復習,要使學生全面而系統地掌握初中數學的基礎知識加深理解這些知識,進一步提高運用這些動知識的分析和解決問題的能力,從而大面積地扎扎實實的提高教學質量,為學生升入高一級學校打下必要的基礎。
2、在《課標》和《考試說明》的指導下開展復習工作
"人人都能獲得良好的數學教育,不同的人在數學上得到不同的發展"。這是新課程標準努力倡導的目標。也是我們總復習工作的出發點。20xx年版的《初中數學新課程標準》(以下簡稱《課程標準》)以及歷年的《河北省文化課考試說明》(以下簡稱《考試說明》)中所確定的必學內容是要求所有學生都應當學習的,一定要教好學好,降低難度、減輕學生過重的學習負擔,正是為了使學生掌握那些最基本、最重要的內容,使絕大多數同學能學得好,增強信心,大面積提高教學質量。另一方面,對學有余力的同學也要創造條件,指導他們進一步學習,充分發揮他們的數學才能,做到既面向全體學生又因材施教。這一重要的教學指導思想,也是我們初三數學總復習必須遵循的方針。
3、從學生的實際出發,有序地進行初三數學總復習
教學是師生雙方的共同活動,教師的教是為學生積極主動地學。初三總復習時間短,內容多,要想取得較好的復習效果,除教師鉆研《課標》與《考試說明》,通曉教材,突出重點之外,還要調查研究、了解學生、明確難點,從學生實際出發,進行復習。否則,課的起點高了,學生接受有困難,起點低了,講得太容易了,學生聽起來乏味厭煩,使復習課不能有的放矢,對癥下藥、因材施教。因此,要了解學生的思想狀況,復習的學習態度和方法;要了解學生對哪些知識是掌握提比較好的,哪些知識理解得不夠深透,還有哪些知識是應當補缺的`,哪些知識是普遍性的問題,哪些知識是個別性問題,充分估計學生的實際水平究竟如何。
4、突出數學思想方法,狠抓"四基"的落實
數學思想方法是數學知識的精髓,是溝通數學知識與運算能力的橋梁。教師應在平時教學中不斷引導學生從數學知識中提煉數學思想,注重運用數學思想去分析問題與解決問題,并有意識、有目的地結合教材逐步滲透給學生:轉化的思想、數形結合的思想、分類討論的思想、方程的思想、函數的思想,要求學生理解待定系數法、消元法、降次法、配方法、換元法。對學習成績好的學生,還應激發他們去總結帶全局性的數學思想方法。
20xx年版初中數學課程標準明確提出"四基",即基礎知識、基本技能、基本思想和基本活動經驗。要使學生復習好基礎知識和掌握基本技能,首先要使學生正確理解概念,對易混的概念抓住它們之間的區別與聯系,同時要抓基本運算、抓基本數學方法和思維方法;靖拍、基本運算必須反復地練習,才能達到純熟和鞏固。凡屬這方面的錯誤,必復習一段、練習一段、檢查一段。務求落實"段段清",以掌握知識的本質為標準。當然還要注意因材施教,逐步深入。
初中數學知識點總結11
初中數學基礎知識點
平方根:①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
初中數學平行四邊形的性質知識點
1.定義:兩組對邊分別平行的四邊形叫平行四邊形
2.平行四邊形的性質
(1)平行四邊形的對邊平行且相等;
(2)平行四邊形的鄰角互補,對角相等;
(3)平行四邊形的對角線互相平分;
3.平行四邊形的判定
平行四邊形是幾何中一個重要內容,如何根據平行四邊形的性質,判定一個四邊形是平行四邊形是個重點,下面就對平行四邊形的五種判定方法,進行劃分:
第一類:與四邊形的對邊有關
(1)兩組對邊分別平行的四邊形是平行四邊形;
(2)兩組對邊分別相等的四邊形是平行四邊形;
(3)一組對邊平行且相等的四邊形是平行四邊形;
第二類:與四邊形的對角有關
(4)兩組對角分別相等的四邊形是平行四邊形;
第三類:與四邊形的對角線有關
(5)對角線互相平分的四邊形是平行四邊形
初中數學函數知識點總結
1.一次函數
(1)定義:形如y=kx+b(k、b是常數,且k≠0)的函數,叫做一次函數。特別地,當b=0時,y是x的正比例函數。即:y=kx(k為常數,k≠0)
所以,正比例函數是特殊的一次函數。
(2)一次函數的圖像及性質:
1在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。
2一次函數與y軸交點的`坐標總是(0,b),與x軸總是交于(-b/k,0)。
3正比例函數的圖像總是過原點。
4k,b與函數圖像所在象限的關系:
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
當k>0,b>0時,直線通過一、二、三象限;
當k>0,b<0時,直線通過一、三、四象限;
當k<0,b>0時,直線通過一、二、四象限;
當k<0,b<0時,直線通過二、三、四象限;
當b=0時,直線通過原點O(0,0)表示的是正比例函數的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
2.二次函數
(1)定義:一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c(a,b,c為常數,a≠0,),稱y為x的二次函數。
(2)二次函數的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0);
頂點式:y=a(x-h)^2+k(拋物線的頂點P(h,k));
交點式:
(3)二次函數的圖像與性質
1二次函數的圖像是一條拋物線。
2拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)。
3二次項系數a決定拋物線的開口方向。
當a>0時,拋物線向上開口;
當a<0時,拋物線向下開口。
4一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5拋物線與x軸交點個數
Δ=b^2-4ac>0時,拋物線與x軸有2個交點;
Δ=b^2-4ac=0時,拋物線與x軸有1個交點;
Δ=b^2-4ac<0時,拋物線與x軸沒有交點。
3.反比例函數
(1)定義:形如y=k/x(k為常數且k≠0) 的函數,叫做反比例函數。
(2)反比例函數圖像性質:
1反比例函數的圖像為雙曲線;
當K>0時,反比例函數圖像經過一,三象限,是減函數;
當K<0時,反比例函數圖像經過二,四象限,是增函數;
反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。
2由于反比例函數屬于奇函數,有f(-x)=-f(x),圖像關于原點對稱。
初中數學知識點總結12
一、初中數學基本概念
1.方程:含有未知數的等式叫做方程。
2.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。
3.二元一次方程:含有兩個未知數,并且未知數的次數是1的二元一次方程。
4.二元一次方程組:由兩個二元一次方程組成的方程組。
5.一元二次方程:含有一個未知數,并且未知數的最高次數是2的整式方程。
6.一元二次方程的解:使一元二次方程左右兩邊相等的未知數的值。
7.一元二次方程的根:一元二次方程的解。
8.一元二次方程的判別式:當a是正數時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程有兩個不相等的實數根;當a是負數時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程沒有實數根;當a是零時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程有兩個相等的實數根。
9.函數:在某變化過程中有兩個變量x、y,如果對于x在某一范圍內的每一個確定的值,y都有唯一的值與它對應,那么稱y是x的函數,x叫做自變量。
10.一次函數:在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內的每一個確定的值,y都有唯一的值與它對應,那么稱y是x的一次函數。
11.正比例函數:在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內的每一個確定的值,y都有唯一的值與它對應,并且這個數值在比例上成正比,那么稱y是x的比例函數。
12.反比例函數:在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內的每一個確定的值,y都有唯一的值與它對應,并且這個數值在比例上成反比,那么稱y是x的反比例函數。
13.平行四邊形:在同一個平面內兩組對角分別平行的四邊形叫做平行四邊形。
14.矩形:有一個內角是直角的平行四邊形叫做矩形。
15.菱形:有兩組鄰邊相等的平行四邊形叫做菱形。
16.正方形:四邊相等的矩形叫做正方形。
17.等腰梯形:兩條腰相等的梯形叫做等腰梯形。
18.三角形:在同一個平面內由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
19.中線:連接一個頂點和它對邊的中點的線段叫做中線。
20.高線:從三角形的`一個頂點向它的對邊作垂線,垂足與頂點之間的線段叫做高線。
21.角平分線:三角形的一個內角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做角平分線。
22.中位線:連接三角形兩邊中點的線段叫做中位線。
23.軸對稱圖形:一條物體沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形。
24.直接開平方法:形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接開平方的方法解一元二次方程的方法。
25.配方法:把一元二次方程的常數項移到方程的右邊,兩邊加上一次項系數的一半的平方,再用右邊的式子除以左邊的式子,得到一個平方的形式,再用直接開平方的方法求解一元二次方程的方法。
26.公式法:用求根公式解一元二次方程的方法。
27.因式分解法:將一元二次方程分解成兩個一次因式的積等于0的一元二次方程,然后將各個因式分解,得到一元一次方程,再用直接開方法求解一元一次方程的方法。
二、初中數學基本運算
1.整式:單項式和多項式的統稱。
2.單項式:由數字和字母的積組成的代數式叫做單項式。單獨的一個數字或字母也叫做單項式。
3.多項式:幾個單項式的和叫做多項式。每個單項式叫做多項式的項。其中不含字母的項叫做常數
初中數學知識點總結13
一次函數:一次函數圖像與性質是中考必考的內容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應用性強。甚至有存在探究題目出現。
主要考察內容:
、贂嬕淮魏瘮档膱D像,并掌握其性質。
、跁鶕阎獥l件,利用待定系數法確定一次函數的解析式。
③能用一次函數解決實際問題。
、芸疾煲籭c函數與二元一次方程組,一元一次不等式的關系。
突破方法:
、僬_理解掌握一次函數的概念,圖像和性質。
、谶\用數學結合的思想解與一次函數圖像有關的問題。
③掌握用待定系數法球一次函數解析式。
、茏鲆恍┚C合題的訓練,提高分析問題的能力。
函數性質:
1.y的變化值與對應的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數,k≠0),∵當x增加m,k(x+m)+b=y+km,km/m=k。
2.當x=0時,b為函數在y軸上的點,坐標為(0,b)。
3當b=0時(即y=kx),一次函數圖像變為正比例函數,正比例函數是特殊的一次函數。
4.在兩個一次函數表達式中:
當兩一次函數表達式中的k相同,b也相同時,兩一次函數圖像重合;當兩一次函數表達式中的k相同,b不相同時,兩一次函數圖像平行;當兩一次函數表達式中的k不相同,b不相同時,兩一次函數圖像相交;當兩一次函數表達式中的k不相同,b相同時,兩一次函數圖像交于y軸上的.同一點(0,b)。若兩個變量x,y間的關系式可以表示成Y=KX+b(k,b為常數,k不等于0)則稱y是x的一次函數圖像性質
1、作法與圖形:通過如下3個步驟:
(1)列表.
。2)描點;[一般取兩個點,根據“兩點確定一條直線”的道理,也可叫“兩點法”。一般的y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點畫直線即可。
正比例函數y=kx(k≠0)的圖象是過坐標原點的一條直線,一般取(0,0)和(1,k)兩點。(3)連線,可以作出一次函數的圖象一條直線。因此,作一次函數的圖象只需知道2點,并連成直線即可。(通常找函數圖象與x軸和y軸的交點分別是-k分之b與0,0與b).
2、性質:
(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。
(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像都是過原點。
3、函數不是數,它是指某一變化過程中兩個變量之間的關系。
4、k,b與函數圖像所在象限:
y=kx時(即b等于0,y與x成正比例):
當k>0時,直線必通過第一、三象限,y隨x的增大而增大;當k0,b>0,這時此函數的圖象經過第一、二、三象限;當k>0,b
初中數學知識點總結14
一、平移變換:
1、概念:在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。
2、性質:
。1)平移前后圖形全等;
。2)對應點連線平行或在同一直線上且相等。
3、平移的作圖步驟和方法:
(1)分清題目要求,確定平移的方向和平移的距離。
。2)分析所作的圖形,找出構成圖形的關健點。
。3)沿一定的方向,按一定的距離平移各個關健點。
。4)連接所作的各個關鍵點,并標上相應的.字母。
(5)寫出結論。
二、旋轉變換:
1、概念:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。
說明:
。1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;
。2)旋轉過程中旋轉中心始終保持不動。
。3)旋轉過程中旋轉的方向是相同的。
(4)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的。⑤旋轉不改變圖形的大小和形狀。
2、性質:
。1)對應點到旋轉中心的距離相等;
(2)對應點與旋轉中心所連線段的夾角等于旋轉角;
。3)旋轉前、后的圖形全等。
3、旋轉作圖的步驟和方法:
(1)確定旋轉中心及旋轉方向、旋轉角;
。2)找出圖形的關鍵點;
。3)將圖形的關鍵點和旋轉中心連接起來,然后按旋轉方向分別將它們旋轉一個旋轉角度數,得到這些關鍵點的對應點;
。4)按原圖形順次連接這些對應點,所得到的圖形就是旋轉后的圖形。
說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角。
4、常見考法
(1)把平移旋轉結合起來證明三角形全等;
。2)利用平移變換與旋轉變換的性質,設計一些題目。
誤區提醒
(1)弄反了坐標平移的上加下減,左減右加的規律;
。2)平移與旋轉的性質沒有掌握。
初中數學知識點總結15
代數部分:有理數、無理數、實數整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(一次函數、二次函數、反比例函數)
幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。
1、實數的分類
有理數:整數(包括:正整數、0、負整數)和分數(包括:有限小數和無限環循小數)都是有理數。如:—3,0.231,0.737373......
無理數:無限不環循小數叫做無理數如:π,—,0.1010010001......(兩個1之間依次多1個0)。
實數:有理數和無理數統稱為實數。
2、無理數
在理解無理數時,要抓住"無限不循環"這一時之,它包含兩層意思:一是無限小數;二是不循環。二者缺一不可。歸納起來有四類:
。1)開方開不盡的數,如等;
。2)有特定意義的數,如圓周率π,或化簡后含有π的數,如+8等;
(3)有特定結構的數,如0.1010010001......等;
(4)某些三角函數,如sin60o等。
注意:判斷一個實數的屬性(如有理數、無理數),應遵循:一化簡,二辨析,三判斷。要注意:"神似"或"形似"都不能作為判斷的標準。
3、非負數:正實數與零的統稱。(表為:x≥0)
常見的非負數有:
性質:若干個非負數的和為0,則每個非負擔數均為0。
4、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規定的'三要素缺一不可)。
解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,并能靈活運用。
、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸("三要素")。
、谌魏我粋有理數都可以用數軸上的一個點來表示。
③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。
作用:A、直觀地比較實數的大。籅、明確體現絕對值意義;C、建立點與實數的一一對應關系。
5、相反數
實數與它的相反數時一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關于原點對稱,如果a與b互為相反數,則有a+b=0,a=—b,反之亦成立。
即:(1)實數的相反數是。
【初中數學知識點總結】相關文章:
初中數學的知識點總結03-11
初中數學的知識點總結09-19
初中數學知識點總結10-24
初中數學的知識點總結大全12-09
初中數學函數知識點總結04-08
初中數學代數知識點總結03-06
數學初中全部知識點總結03-06
初中數學必備知識點總結03-11
初中數學圓知識點總結10-17
初中數學知識點總結06-24