高三數學知識點歸納總結
總結是在某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而得出教訓和一些規律性認識的一種書面材料,它可以給我們下一階段的學習和工作生活做指導,因此十分有必須要寫一份總結哦。總結怎么寫才不會流于形式呢?下面是小編整理的高三數學知識點歸納總結,僅供參考,歡迎大家閱讀。
高三數學知識點歸納總結1
1.滿足二元一次不等式(組)的x和y的取值構成有序數對(x,y),稱為二元一次不等式(組)的一個解,所有這樣的有序數對(x,y)構成的集合稱為二元一次不等式(組)的解集。
2.二元一次不等式(組)的每一個解(x,y)作為點的坐標對應平面上的一個點,二元一次不等式(組)的解集對應平面直角坐標系中的一個半平面(平面區域)。
3.直線l:Ax+By+C=0(A、B不全為零)把坐標平面劃分成兩部分,其中一部分(半個平面)對應二元一次不等式Ax+By+C>0(或≥0),另一部分對應二元一次不等式Ax+By+C
4.已知平面區域,用不等式(組)表示它,其方法是:在所有直線外任取一點(如本題的原點(0,0)),將其坐標代入Ax+By+C,判斷正負就可以確定相應不等式。
5.一個二元一次不等式表示的平面區域是相應直線劃分開的半個平面,一般用特殊點代入二元一次不等式檢驗就可以判定,當直線不過原點時常選原點檢驗,當直線過原點時,常選(1,0)或(0,1)代入檢驗,二元一次不等式組表示的平面區域是它的各個不等式所表示的平面區域的公共部分,注意邊界是實線還是虛線的含義。“線定界,點定域”。
6.滿足二元一次不等式(組)的整數x和y的取值構成的有序數對(x,y),稱為這個二元一次不等式(組)的一個解。所有整數解對應的點稱為整點(也叫格點),它們都在這個二元一次不等式(組)表示的平面區域內。
7.畫二元一次不等式Ax+By+C≥0所表示的平面區域時,應把邊界畫成實線,畫二元一次不等式Ax+By+C>0所表示的.平面區域時,應把邊界畫成虛線。
8.若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的同側,則Ax0+By0+C與Ax1+Byl+C符號相同;若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的兩側,則Ax0+By0+C與Ax1+Byl+C符號相反。
9.從實際問題中抽象出二元一次不等式(組)的步驟是:
(1)根據題意,設出變量;
(2)分析問題中的變量,并根據各個不等關系列出常量與變量x,y之間的不等式;
(3)把各個不等式連同變量x,y有意義的實際范圍合在一起,組成不等式組。
高三數學知識點歸納總結2
1、三類角的求法:
①找出或作出有關的角。
②證明其符合定義,并指出所求作的角。
③計算大小(解直角三角形,或用余弦定理)
2、正棱柱——底面為正多邊形的直棱柱
正棱錐——底面是正多邊形,頂點在底面的射影是底面的`中心。
正棱錐的計算集中在四個直角三角形中:
3、怎樣判斷直線l與圓C的位置關系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時,注意利用圓的“垂徑定理”。
4、對線性規劃問題:
作出可行域,作出以目標函數為截距的直線,在可行域內平移直線,求出目標函數的最值。
高三數學知識點歸納總結3
線線平行常用方法
(1)定義:在同一平面內沒有公共點的兩條直線是平行直線。
(2)公理:在空間中平行于同一條直線的兩只直線互相平行。
(3)初中所學平面幾何中判斷直線平行的方法
(4)線面平行的'性質:如果一條直線和一個平面平行,經過這條直線的平面和這個平面的相交,那么這條直線就和兩平面的交線平行。
(5)線面垂直的性質:如果兩直線同時垂直于同一平面,那么兩直線平行。
(6)面面平行的性質:若兩個平行平面同時與第三個平面相交,則它們的交線平行。
高三數學知識點歸納總結4
1、函數的單調性
(1)設x1、x2[a,b],x1x2那么
f(x1)f(x2)0f(x)在[a,b]上是增函數;
f(x1)f(x2)0f(x)在[a,b]上是減函數.
(2)設函數yf(x)在某個區間內可導,若f(x)0,則f(x)為增函數;若f(x)0,則f(x)為減函數.
2、函數的奇偶性
對于定義域內任意的x,都有f(-x)=f(x),則f(x)是偶函數;對于定義域內任意的x,都有f(x)f(x),則f(x)是奇函數。奇函數的圖象關于原點對稱,偶函數的圖象關于y軸對稱。
3、判別式
b2-4ac=0注:方程有兩個相等的`實根
b2-4ac>0注:方程有兩個不等的實根
b2-4ac
4、兩角和公式
sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
5、倍角公式
tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
6、拋物線
拋物線:y=ax_bx+c就是y等于ax的平方加上bx再加上c。
a>0時,拋物線開口向上;a
頂點式y=a(x+h)_k就是y等于a乘以(x+h)的平方+k,-h是頂點坐標的x,k是頂點坐標的y,一般用于求值與最小值。
拋物線標準方程:y^2=2px它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0)。
準線方程為x=-p/2由于拋物線的焦點可在任意半軸,故共有標準方程:y^2=2pxy^2=-2p_^2=2pyx^2=-2py。
【高三數學知識點歸納總結】相關文章:
高三數學知識點歸納總結 高三數學知識梳理04-07
高三化學知識點總結歸納06-05
初中數學知識點總結歸納06-08
小學數學知識點總結歸納09-27
數學知識點歸納總結最新05-08
初中數學知識點總結歸納09-09
數學高二知識點總結歸納03-19
小升初的數學知識點總結歸納09-03
初中數學知識點總結歸納07-01
初中數學圓的知識點歸納總結06-16