四年級下冊數學知識點總結
總結是對某一特定時間段內的學習和工作生活等表現情況加以回顧和分析的一種書面材料,寫總結有利于我們學習和工作能力的提高,我想我們需要寫一份總結了吧。那么你真的懂得怎么寫總結嗎?下面是小編為大家整理的四年級下冊數學知識點總結,僅供參考,大家一起來看看吧。
四年級下冊數學知識點總結1
【知識框架】
小數乘法的意義 小數乘法的意義
小數點移動引起小數大小變化的規律
積的小數位數與乘數的小數位數的關系
計算小數乘法 會用豎式計算小數乘法及估算
小數的混合運算(整數運算定律完全適合小數)
【知識要點】
文具店(小數乘法的意義)
通過具體情境教學使學生了解小數與整數相乘就是表示幾個相同加數的和的簡便運算。
1、小數乘法的意義
小數乘法的意義比整數乘法的意義,有了進一步的擴展.小數乘法的意義包括兩種情況:一是同整數乘法的意義相同,即求相同加數的和的簡便運算.二是求一個數的xxx幾,百分之幾……是多少.
2、小數的計算法則
計算小數乘法,先按照整數乘示的法則算出積,再看因數中一共有幾位小數,就從積的右邊起數出幾位,點上小數點.小數計算乘法,用的是轉化的思想方法.先把小數轉化為整數算出積,再確定小數點的位置,還原成小數乘法的積.如×看作62×3相乘的積是186,因數中一共有兩位小數,就從186的右邊起數出兩位,點上小數點還原成小數乘法的積.因此,小數乘法的關鍵是處理好小數點.在點小數點時注意,乘得的積的小數位數不夠時,要在前面用0補足,如×,在8的前面補兩個0,點上小數點后,整數部分也寫一個0.
小數點搬家(掌握小數點移動引起小數大小變化的規律)
明白小數點向左移動一位,小數就縮小到原來的xxx一;小數點向左移動兩位,小數就縮小到原來的'百分之一……以此類推。小數點向右移動一位,這個數就擴大到原來的10倍;小數點向右移動兩位,這個數就擴大到原來100倍……以此類推。
街心廣場(積的小數位數與乘數的小數位數的關系)
積的小數位數與乘法的小數位數的關系:小數乘法中各個因數中小數的位數和就是這道題中積的小數的位數。
包裝(小數乘法2)
小數乘小數計算方法,即將小數乘法轉化為整數乘法進行計算。根據乘數擴大的倍數,將積縮小相同倍數,進一步體會到兩個乘數共有幾位小數,積就有幾位小數。
爬行最慢的哺乳動物(小數乘法3)
進一步理解小數乘小數的計算方法即兩個因數里共有幾位小數,積就有幾位小數;當其中的一個因數是整十數時,積中如果有一位小數,就在末尾畫掉一個零……
手拉手(小數的混合運算)
小數四則混合運算的運算順序與整數四則混合運算的順序相同。整數的運算定律在小數運算中仍然適用。例如乘法的結合律,交換律,分配律。等等。
四年級下冊數學知識點總結2
1、加法運算定律:
①加法交換律:兩個數相加,交換加數的位置,和不變。
a+b=b+a
②加法結合律:三個數相加,可以先把前兩個數相加,再加上第三個數;或者先把后兩個數相加,再加上第一個數,和不變。
(a+b)+c=a+(b+c)
③加法的這兩個定律往往結合起來一起使用。
如:165+93+35=93+(165+35)
2、連減的性質:一個數連續減去兩個數,等于這個數減去那兩個數的和。
a—b—c=a—(b+c)
3、乘法運算定律:
①乘法交換律:兩個數相乘,交換因數的位置,積不變。
a×b=b×a
②乘法結合律:三個數相乘,可以先把前兩個數相乘,再乘以第三個數,也可以先把后兩個數相乘,再乘以第一個數,積不變。
(a×b) ×c=a×(b×c)
乘法的這兩個定律往往結合起來一起使用。
如:125×78×8的'簡算。
③乘法分配律:兩個數的和與一個數相乘,可以先把這兩個數分別與這兩個數相乘,再把積相加。
(a+b) ×c=a×c+b×c
4、連除的性質:一個數連續除以兩個數,等于除以這兩個數的積。
a÷b÷c=a÷(b×c)
5、有關簡算的拓展:
102×38—38×2
125×25×32
37×96+37×3+37
125×88
3.25+1。98
10.32—1。98
易錯的情況:
0.6+0.4—0.6+0.4
38×99+99
小學數學四大領域主要內容
數與代數:的認識,數的表示,數的大小,數的運算,數量的估計;
圖形與幾何:空間與平面的基本圖形,圖形的性質和分類;圖形的平移、旋轉、軸對稱;
統計與概率:收集、整理和描述數據,處理數據;
實踐與綜合應用:以一類問題為載體,學生主動參與的學習活動,是幫助學生積累數學活動經驗的重要途徑。
數學整除的特征
1、能被2整除的數的特征:個位上是0、2、4、6、8。
2、能被5整除的數的特征:個位上是0或5。
3、能被3整除的數的特征:一個數的各個數位上的數之和能被3整除,這個數就能被3整除。
四年級下冊數學知識點總結3
1、去0法:被除數和除數的末尾同時去掉相同個數的0,商不變。
2、除數是兩位數的除法的計算方法:
從被除數的高位除起,先用除數試除被除數的`前兩位數,如果它比除數小,再試除前三位數。
除到被除數的哪一位,就在那一位上寫商。
求出每一位商,余下的數必須比除數小。
3、商的變化規律:
被除數和商的變化相同。
除數和商的變化相反。
商不變的性質:被除數和除數同時乘(或除以)一個相同的數(0除外),商不變。
除數× 商 + xxx = 被除數
(被除數-xxx)÷ 商 = 除數
四年級下冊數學知識點總結4
一、單式折線統計圖
1、折線統計圖的特點:既可以反映出數量的多少,又能表示出數量的增減變化。
2、繪制折線統計圖的方法:
①畫出橫軸和縱軸(補畫統計圖時此步驟已給出);
②確定一個單位長度表示數量多少(補畫統計圖時此步驟已給出);
③描點,描點時應注意先找準橫軸上的點,再找準縱軸上相對應的點,過兩點分別做橫軸、縱軸的垂線,兩條垂線的交點就是所要描的點,在交點處點上實心點;
④用線段順次連接所有點,并標注數據;
⑤標注好日期和標題。(日期也可不標注)
3、折線統計圖的應用:可以根據折線統計圖發現問題、解決問題,并進行合理地推測。
(知識巧記)統計圖,類型多,條形、折線一一說。
條形數量好比較,折線增減更明了。
繪制折線較簡單,描點連線來解決。
完成繪圖細分析,解決問題更容易。
二、復式折線統計圖
1、復式折線統計圖:如果在統計過程中存在兩組(或多組)數據,且需要在一幅統計圖中表示這兩組(或多組)數據,就要用兩種(或多種)不同顏色(或不同形式)的折線來表示不同數量的變化情況,這種統計圖就是復式折線統計圖。
2、復式折線統計圖的特點:復式折線統計圖不但能表示出各組數據的多少,數據的增減變化的情況,而且可以比較各組數據的變化趨勢。
3、復式折線統計圖的繪制方法:與單式折線統計圖的繪制方法基本相同,只是用不同的折線表示表示不同的量,需標明圖例。
4、運用橫向、縱向、綜合、對比等不同的觀察方法,可以讀懂復式折線統計圖,從中獲取更多的信息,并能根據信息回答或提出相應的問題,同時進行簡單地分析和合理地推測。
小學數學新課標的基本理念
1、義務教育階段的數學課程應突出體現基礎性、普及性和發展性,使數學教育面向全體學生,實現:人人學有價值的數學;人人都能獲得必需的數學;不同的人在數學上得到不同的發展。
2、數學是人們生活、勞動和學習必不可少的工具,能夠幫助人們處理數據、進行計算、推理和證明,數學模型可以有效地描述自然現象和社會現象;數學為其他科學提供了語言、思想和方法,是一切重大技術發展的基礎;數學在提高人的推理能力、抽象能力、想象力和創造力等方面有著獨特的作用;數學是人類的一種文化,它的內容、思想、方法和語言是現代文明的重要組成部分。
3、學生的數學學習內容應當是現實的、有意義的、富有挑戰性的,這些內容要有利于學生主動地進行觀察、實驗、猜測、驗證、推理與交流等數學活動。內容的呈現應采用不同的表達方式,以滿足多樣化的學習需求。有效的數學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的'重要方式。由于學生所處的文化環境、家庭背景和自身思維方式的不同,學生的數學學習活動應當是一個生動活潑的、主動的和富有個性的過程。
小數計算法則
小數加減法計算法則
計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最后在得數里對齊橫線上的小數點位置,點上小數點。
小數乘法的計算法則
計算小數乘法,先按照乘法的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。
四年級下冊數學知識點總結5
第一單元四則運算
1.在沒有括號的算式里,如果只有加、減法,那么從左往右按順序計算。2.在沒有括號的算式里,如果只有乘、除法,那么從左往右按順序計算。
3.在沒有括號的算式里,既有加、減法,又有乘、除法,那么先算乘、除法,再算加、減法。4.在有括號的算式里,先算括號里的算式,再算括號外面的算式。5.有關0的計算:
(1)零加上任何數得原數。[0+5=5,8+0=8](2)被減數等于減數,差為0。[5-5=0,7-7=0](3)0與任何數相乘得0。[0×5=0,0×24=0]
(4)0除于任何非0的數得0。[0÷18=0,0÷29=0](5)0不能做除數。第二單元位置與方向
1.地圖的三要素:圖例、方向、比例尺。2.確定方向時:A、先確定觀測點
(1)從那里出發,那里就是觀測點。例如:從渡口出發,到鐘山。(渡口就是觀測點)(2)“在”字后面的為觀測點。例如:渡口在鐘山的方向上。(鐘山就是觀測點)B站在觀測點來看方向。(A偏B,A就是(“偏”字前面的)標角度的角靠近的方向{東、南、西、北}。
例如:①東偏南25°(標25°的那個角就靠近東)②西偏北35°(標35°的那個角就靠近西)
3.描述路線和繪路線圖時:只有一條線,所作的線是首尾相連的。4.常用的八個方位:東、南、西、北、東南、東北、西南、西北。
觀測點與被觀測點對調,那么方向是原方向的相對方向,如:東與西相對,南與北相對。5.小紅家在學校的東偏南20°方向,距離120米處學校在小紅家的西偏北20°方向,距離120米處第三單元運算定律與簡便計算一、運算定律
1.加法交換律:交換加數的位置和不變。[a+b=b+a](如:23+34=57與34+23=57)
2.加法結合律:(a+b)+c=a+(b+c)先把前兩個數相加,或者先把后兩個數相加,和不變。3.乘法交換律:a×b=b×a交換因數的位置積不變。
4.乘法結合律:(a×b)×c=a×(b×c)先把前兩個數相乘,或者先把后兩個數相乘,積不變。
5.乘法分配律:(a+b)×c=a×c+b×c兩個數的和與一個數相乘,可以把他們與這個數相乘,再相加。二、簡便計算
1.連加的簡便計算:
①使用加法結合律(把和是整十、整百、整千的數結合在一起)②個位:1與9,2與8,3與7,4與6,5與5,結合。③十位:0與9,1與8,2與7,3與6,4與5,結合。2.連減的簡便計算:
①連續減去幾個數就等于減去這幾個數的和。如:106-26-74=106-(26+74)②減去幾個數的和就等于連續減去這幾個數。如:106-(26+74)=106-26-743.加減混合的簡便計算:
第一個數的位置不變,其余的加數、減數可以交換位置(可以先加,也可以先減)例如:123+38-23=123-23+38146-78+54=146+54-784.連乘的簡便計算:
使用乘法結合律:把常見的數結合在一起25與4;125與8;125與80等看見25就去找4,看見125就去找8;5.連除的簡便計算:
①連續除以幾個數就等于除以這幾個數的積。②除以幾個數的積就等于連續除以這幾個數。6.乘、除混合的簡便計算:
第一個數的位置不變,其余的因數、除數可以交換位置。(可以先乘,也可以先除)例如:27×13÷9=27÷9×137.乘法分配律的應用:
①類型一:(a+b)×c(a-b)×c
=a×c+b×c=a×c-b×c
②類型二:a×c+b×ca×c-b×c=(a+b)×c=(a-b)×c③類型三:a×99+aa×b-a=a×(99+1)=a×(b-1)④類型四:a×99a×102=a×(100-1)=a×(100+2)=a×100-a×1=a×100+a×2第四單元小數的意義和性質
1.小數的產生:在進行測量和計算時,往往不能正好得到整數的結果,這時常用小數來表示。2.分母是10、100、1000的分數可以用(小數)表示。
3.小數的計數單位是十分之一、百分之一、千分之一分別寫作0.1、0.01、0.0014.每相鄰兩個計數單位間的進率是(十)。5.數位順序表整數部分小數點小數部分數位千位百位十位個位十分百分千分萬分位位位位計數個.十分百分千分萬分單位千百十(一)之一之一之一之一例如(1)6.378的計數單位是0.001。
(最低位的計數單位是整個數的計數單位)
(2)6.378中有6個一,3個十分之一(0.1),7個百分之一(0.01),
和8個千分之一(0.001)。
(3)6.378中有(6378)個千分之一(0.001)。
(4)9.426中的4表示4個十分之一(0.1)[4在十分位]
6.小數的性質:小數的末尾添上“0”或去掉“0”,小數的'大小不變。7.小數的大小比較:
(1)統一單位。(統一成一樣的單位)
(2)把要比較的數寫成一列(小數點必須對齊)
(3)先比較整數部分;整數部分相同,就比較十分位;十分位相同,比較百分位;百分位相同,就比較千分位8.小數點的移動:
小數點向右移動小數就擴大到原數的乘一位10倍×10兩位100倍×100
三位1000倍×1000
小數點向左移動小數就縮小到原數的除以
一位1÷10
10兩位1÷100
100三位1÷1000
10009.單位換算:
(1)高級單位轉化成低級單位===乘進率,小數點向右移動。(2)低級單位轉化成高級單位===除以進率,小數點向左移動。10.求小數的近似數
方法:“四舍五入”法
(1)①保留整數,表示精確到個位,看十分位;
②保留一位小數,表示精確到十分位,看百分位;③保留兩位小數,表示精確到百分位,看千分位;
(2)改寫成“萬”作為單位的數:在萬位的右下角,點上小數點,
在數的后面加上“萬”字。(先劃數級線)
(3)改寫成“億”作為單位的數:在億位的右下角,點上小數點,
在數的后面加上“億”字。(先劃數級線)(4)在表示近似數時,小數末尾的“0”不能去掉。
11.進率:1米=10分米1分米=10厘米1厘米=10毫米1米=100厘米=1000毫米
1千克=1000克1噸=1000千克
1平方米=100平方分米1平方分米=100平方厘米1平方千米=100公頃1平方米=10000平方厘米1公頃=10000平方米1平方千米=1000000平方米
第五單元三角形
1.由三條線段圍成的圖形(每相鄰兩條線段的端點相連)叫做三角形。2.三角形有3個角、3條邊、3個頂點。
3.從三角形的一個頂點到它的對邊做一條垂線,頂點和垂足之間的線段叫做三角形的高,這條邊叫做三角形的底。
4.為了表達方便,用字母A、B、C分別表示三角形的三個頂點,三角形可表示成三角形ABC。5.三角形具有穩定性。
6.三角形的任意兩邊的和大于第三邊。
7.三角形按角分成:(1)銳角三角形(三個內角都是銳角的三角形)(2)直角三角形(有一個角是直角的三角形)(3)鈍角三角形(有一個角是鈍角的三角形)
8.三角形按邊分成:(1)等腰三角形(有兩條邊相等,相等的兩條邊叫做三角形的腰;
有兩個角相等,相等的兩個角叫做底角。)
(2)等邊三角形(三邊相等,三個內角相等都是60°)(3)一般三角形
9.三角形中只能有一個直角;三角形中只能有一個鈍角;
三角形中至少有兩個銳角,最多有三個銳角。10.三角形的內角和是180°。
11.最少用2個相同直角三角形可以拼一個平行四邊形。
最少用3個相同等邊三角形可以拼一個梯形。
最少用2個相同等邊三角形可以拼一個平行四邊形。最少用2個相同等腰直角三角形可以拼一個正方形。最少用2個相同直角三角形可以拼一個長方形。
12.無論是什么形狀的圖形,沒有重疊,沒有空隙地鋪在平面上,就是密鋪。第六單元小數的加法和減法
1.小數加法、減法:(1)把數位(小數點)對齊。(2)加減和整數的加減一樣。2.小數加法、減法的簡便計算:
(1)可使用加法交換律,加法結合律進行簡便計算。(2)連續減去兩個數等于減去這兩個數的和。
(3)加法、減法混合在一起時,可以先加,也可以先減,看先干什么更簡單.例如:(1)5.6+2.7+4.4(2)9.14+1.43+4.57=(5.6+4.4)+2.7=9.14+(1.43+4.57)(3)51.27-8.66-1.34(4)4.02-3.5+0.98=51.27-(8.66+1.34)=4.02+0.98-3.5第七單元折線統計圖
1.折線統計圖的特點:(1)可以看出數量的多少.(2)可以看出變化趨勢.2.常用增加(上升)與減少(降低)來描述變化趨勢.第八單元數學廣角(植樹問題)
一、1.兩頭(兩端)要栽:棵數=間隔數+1
2.一頭(一端)要栽:棵數=間隔數3.兩頭(兩端)不栽:棵數=間隔數-1
二、棋盤棋子數目:
1.棋盤最外層棋子數:每邊棋子數×邊數-邊數2.棋盤總的棋子數:每行棋子數×每列棋子數3.方陣最外層人數:每邊人數×4-4
4.多邊形上擺花盆:每邊擺的花盆數×邊數-邊數
四年級下冊數學知識點總結6
1、在同一個平面內不相交的兩條直線叫做平行線,也可以說這兩條直線互相平行。
記作:a∥b 讀作:a平行于b
2、兩條直線相交成直角,就說這兩條直線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。記作:a⊥b 讀作:a垂直于b
3、從直線外一點到這條直線所畫的垂直線段最短,它的長度叫做這點到直線的距離。
4、與兩條平行線互相垂直的線段長度都相等。或者說:兩條平行線之間的距離處處相等。
經過直線上一點(或外一點)作垂線,可以畫一條。
5、同一平面內,與同一條直線平行(或垂直)的兩條直線也互相平行。
6、從平行四邊形一條邊上的一點向對邊引一條垂線,這點和垂足之間的線段叫做平行四邊形的高,垂足所在的邊叫做平行四邊形的底。
7、一個長方形,用兩手捏住長方形的兩個對角,向相反方向拉,可以拉成不同形狀的.平行四邊形,但是周長不變。
8、平行四邊形的特點:容易變形。例如:伸縮門、升降機
9、平行四邊形和梯形有無數條高。
10、兩腰相等的梯形叫做等腰梯形。特點:兩腰相等,兩底角相等。
11、有一個角是直角的梯形叫做直角梯形。特點:有一條腰就是梯形的高。
12、從梯形上底任取一個點,向下底引一條垂線,這個點和垂足之間的線段叫做梯形的高。
13、兩個完全一樣的三角形可以拼成一個平行四邊形。
兩個完全一樣的梯形可以拼成一個平行四邊形。
兩個完全一樣的直角梯形可以拼成一個長方形或平行四邊形。
14、長方形是特殊的平行四邊形,正方形是特殊的平行四邊形。正方形是特殊的長方形。
15、三角形三個內角的和是180°,四邊形四個內角的和是360°。
16、四邊形小結:
兩組對邊分別平行的四邊形叫做平行四邊形;
只有一組對邊平行的四邊形叫梯形。
兩腰相等的梯形叫做等腰梯形。
有一個角是直角的梯形叫做直角梯形。
四個角都是直角的四邊形叫長方形。
四個角都是直角,并且四條邊都相等的四邊形叫正方形。
四年級下冊數學知識點總結7
1、位置與方向
(1)確定物體位置的兩個條件:方向和距離。
(2)在平面圖上表明物體位置的方法:先確定方向,再以選定的長度單位為基準來確定距離,最后畫出物體的具體位置,標出名稱。確定方向時選擇與物體所在反響離得較近(夾角較小)的方位;距離必須以選定的單位長度為基準。(3)如何描述物體的位置,與觀測點有關,觀測點不同,物體位置的描述就不同。
(4)描述路線圖的方法:按行駛路線,確定觀測點及行走的方向和路程。例題:
學校在小明家北偏xx的方向上,距離是xx米。
書店在小明家x偏xx的方向上,距離是xx米。
郵局在小明家x偏xx的方向上,距離是xx米。
游泳館在小明家x偏xx的方向上,距離是xx米。
2、整數加法
(1)把兩個數合并成一個數的運算叫做加法。
(2)在加法里,相加的.數叫做加數,加得的數叫做和。加數是部分數,和是總數。
(3)加數+加數=和,一個加數=和-另一個加數
3、整數減法
(1)已知兩個加數的和與其中的一個加數,求另一個加數的運算叫做減法。
(2)在減法里,已知的和叫做被減數,已知的加數叫做減數,未知的加數叫做差。被減數是總數,減數和差分別是部分數。
(3)加法和減法互為逆運算。
4、整數乘法
(1)求幾個相同加數的和的簡便運算叫做乘法。
(2)在乘法里,相同的加數和相同加數的個數都叫做因數。相同加數的和叫做積。
(3)在乘法里,0和任何數相乘都得0。
(4)1和任何數相乘都的任何數。
(5)一個因數×一個因數=積;一個因數=積÷另一個因數
5、整數除法
(1)已知兩個因數的積與其中一個因數,求另一個因數的運算叫做除法。
(2)在除法里,已知的積叫做被除數,已知的一個因數叫做除數,所求的因數叫做商。
(3)乘法和除法互為逆運算。
(4)在除法里,0不能做除數。因為0和任何數相乘都得0,所以任何一個數除以0,均得不到一個確定的商。
(5)被除數÷除數=商,除數=被除數÷商,被除數=商×除數。
6、整數加、減法計算法則
整數加法計算法則:相同數位對齊,從低位加起,哪一位上的數相加滿十,就向前一位進一。
整數減法計算法則:相同數位對齊,從低位加起,哪一位上的數不夠減,就從它的前一位退一作十,和本位上的數合并在一起,再減。
7、整數乘、除法計算法則
整數乘法計算法則:先用一個因數每一位上的數分別去乘另一個因數各個數位上的數,用因數哪一位上的數去乘,乘得的數的末尾就對齊哪一位,然后把各次乘得的積加起來。
整數除法計算法則:先從被除數的高位除起,除數是幾位數,就看被除數的前幾位;如果不夠除,就多看一位,除到被除數的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補“0”占位。每次除得的余數要小于除數。
8、0的運算
“0”不能做除數;字母表示:a÷0錯誤一個數加上0還得原數;字母表示:a+0=a一個數減去0還得原數;字母表示:a-0=a被減數等于減數,差是0;字母表示:a-a=0一個數和0相乘,仍得0;字母表示:a×0=0
0除以任何非0的數,還得0;字母表示:0÷a(a≠0)=08、四則運算
(1)加法、減法、乘法和除法統稱為四則運算。加法、減法稱為第一級運算,乘法、除法稱為第二級運算。
(2)在沒有括號的算是里,有乘、除法和加、減法,要先算乘、除法,后算加減法。
(3)有括號的混合運算先算小括號里面的,再算中括號里面的,最后算括號外面的。
9、加法交換律:
兩個加數交換位置,和不變。字母公式:a+b+c=(b+a)+c
10、加法結合律:
先把前兩個數相加,或者先把后兩個數相加,和不變。
字母公式:a+b+c=a+(b+c)
11、乘法交換律:
兩個因數交換位置,積不變。字母公式:a×b=b×a
12、乘法結合律:
先乘前兩個數,或者先乘后兩個數,積不變。
字母公式:a×b×c=a×(b×c)
13、乘法分配律:
兩個數與一個數相乘,可以先把它們與這個數分別相乘,再相加。字母公式:(a+b)×c=a×c+b×c
14、拓展:
(a-b)×c=a×c-b×c或a×(b-c)=a×b-a×c
四年級下冊數學知識點總結8
1、平均數是通過把多的部分移給少的部分,使各部分都相等而得到的數,所以平均數在最大數與最小數之間
2、平均數=總數÷總分數
3、平均數是統計中的一個重要概念,也是一個非常抽象的概念,在具體情境中體會為什么要學平均數,在統計的背景中理解平均數的含義,在比較、觀察中把握平均數的特征,進而運用平均數解決問題,了解它的價值。
1、復式條形統計圖:用兩種以上的長方形直條表示不同數量的條形統計圖。
2、復式條形統計圖要畫兩種以上的直條,為了區別可以用不同的顏色或者線條來表示。
3、與復式統計表相比,復式條形統計圖更便于比較幾組數據的大小,提供的.信息更多,使用起來更加方便。
4、復式條形統計圖優點:可以直觀的看出不同項目數據是多少,能形象的比較不同的數據。
5、復式條形統計圖缺點:需要自己計算總數,不大方便。
6、復式條形統計圖的制作步驟:
①根據統計資料整理數據
②畫出縱軸和橫軸(縱軸高度的確定:要確定一個長度來表示一定的數量。橫軸長度的確定:要根據紙的大小、字數的多少來確定)
③畫直條或條形的寬度要一致,條形之間的間隔要相等。
④不同的直條做不同的標記(如顏色不同或在其中一組畫上條紋)
⑤寫上總標題、數量單位和制圖日期
小學數學梯形的面積怎么求
梯形面積與周長
梯形的面積公式:(上底+下底)×高÷2、
用字母表示:(a+b)×h÷2
梯形的面積公式2:中位線×高
用字母表示:l·h (l表示中位線長度)
另外對角線互相垂直的梯形:對角線×對角線÷2
梯形的周長公式:上底+下底+腰+腰,用字母表示:L=a+b+c+d
等腰梯形的周長公式:上底+下底+2腰,用字母表示:a+c+2b。
數學學習方法分享
數學學習技巧
在學習過程中,要準確地掌握抽象概念的本質含義,了解從實際模型中抽象為理論的演變過程。對所學理論知識,要在更大范圍內尋求它的具體實例,使之具體化,盡量將所學的理論知識和思維方法應用于實踐。
學數學指導
1、上課認真聽講是打好數學基礎的重要環節,也是牢固掌握基礎知識的根本途徑。
2、在解決問題時,我們可以試著用不同的方法,如假設法,特殊值法,整體法。
3、深刻理解知識點,仔細閱讀課本,認真聽講,理解聯系實際。
3怎樣學好數學
主要是指養成思考的習慣,學會思考的方法。獨立思考是學習數學必須具備的能力。
同學們在學習時,要邊聽(課)邊想,邊看(書)邊想,邊做(題)邊想,通過自己積極思考,深刻理解數學知識,歸納總結數學規律,靈活解決數學問題,這樣才能把老師講的、課本上寫的變成自己的知識。
四年級下冊數學知識點總結9
(一)口算除法
1、整十數除整十數或幾百幾十的數的口算方法。
(1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60
(2)利用表內除法計算。利用除法運算的性質:將被除數和除數同時擴大或縮小相同的倍數,商不變。如:200÷50想20÷5=4,所以200÷50=4。
2、兩位數除兩位數或三位數的估算方法:除法估算一般是把算式中不是整十數或幾百幾十的數用“四舍五入”法估算成整十數或幾百幾十的數,再進行口算。注意結果用“≈”號。
(二)筆算除法
1、除數是兩位數的筆算除法計算方法:從被除數的高位除起,先用除數試除被除數的前兩位,如果前兩位數比除數小,就看前三位。除到被除數的哪一位,商就寫在那一位的上面。每次除后余下的數必須比除數小。
2、除數不是整十數的兩位數的除法的試商方法:如果除數是一個接近整十數的兩位數,就用“四舍五入”法把除數看做與它接近的整十數試商,也可以把除數看做與它接近的幾十五,再利用一位數的乘法直接確定商。
3、商一位數:
(1)兩位數除以整十數,如:62÷30;
(2)三位數除以整十數,如:364÷70
(3)兩位數除以兩位數,如:90÷29(把29看做30來試商)
(4)三位數除以兩位數,如:324÷81(把81看做80來試商)
(5)三位數除以兩位數,如:104÷26(把26看做25來試商)
(6)同頭無除商―,如:404÷42(被除數的位和除數的位一樣,即“同頭”,被除數的前兩位除以除數不夠除,即“無除”,不是商8就是商9。)
(7)除數折半商四五,如:252÷48(除數48的一半24,和被除數的前兩位25很接近,不是商4就是商5。)
4、商兩位數:(三位數除以兩位數)
(1)前兩位有余數,如:576÷18
(2)前兩位沒有余數,如:930÷31
5、判斷商的位數的方法:
被除數的前兩位除以除數不夠除,商是一位數;被除數的前兩位除以除數夠除,商是兩位數。
(三)商的變化規律
1、商變化:
(1)被除數不變,除數乘(或除以)幾(0除外),商就除以(或乘)相同的數。
(2)除數不變,被除數乘(或除以)幾(0除外)商也乘(或除以)相同的數。
2、商不變:被除數和除數同時乘(或除以)相同的數(0除外),商不變。
(四)簡便計算:同時去掉同樣多的0,如9100÷700=91÷7=13
小學數學如何解題
1、首先是精選題目,做到少而精。只有解決質量高的、有代表性的題目才能達到事半功倍的效果。然而絕大多數的同學還沒有辨別、分析題目好壞的能力,這就需要在老師的指導下來選擇復習的練習題,以了解高考題的形式、難度。
2、其次是分析題目。解答任何一個數學題目之前,都要先進行分析。相對于比較難的'題目,分析更顯得尤為重要。我們知道,解決數學問題實際上就是在題目的已知條件和待求結論中架起聯系的橋梁,也就是在分析題目中已知與待求之間差異的基礎上,化歸和消除這些差異。當然在這個過程中也反映出對數學基礎知識掌握的熟練程度、理解程度和數學方法的靈活應用能力。例如,許多三角方面的題目都是把角、函數名、結構形式統一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的關鍵。
3、最后,題目總結。解題不是目的,我們是通過解題來檢驗我們的學習效果,發現學習中的不足的,以便改進和提高。因此,解題后的總結至關重要,這正是我們學習的大好機會。對于一道完成的題目,有以下幾個方面需要總結:
①在知識方面,題目中涉及哪些概念、定理、公式等基礎知識,在解題過程中是如何應用這些知識的。②在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應用。③能不能把解題過程概括、歸納成幾個步驟(比如用數學歸納法證明題目就有很明顯的三個步驟)。④能不能歸納出題目的類型,進而掌握這類題目的解題通法(我們反對老師把現成的題目類型給學生,讓學生拿著題目套類型,但我們鼓勵學生自己總結、歸納題目類型)。
四年級下冊數學知識點總結10
運算定律及簡便運算
一、加法運算定律:
1、加法交換律:兩個數相加,交換加數的位置,和不變。a+b=b+a
2、加法結合律:三個數相加,可以先把前兩個數相加,再加上第三個數;或者先把后兩個數相加,再加上第一個數,和不變。(a+b)+c=a+b+c
加法的這兩個定律往往結合起來一起使用。
如:165+93+35=93+(165+35)依據是什么?
3、連減的性質:一個數連續減去兩個數,等于這個數減去那兩個數的和。a-b-c=a-b+c
二、乘法運算定律:
1、乘法交換律:兩個數相乘,交換因數的位置,積不變。a×b=b×a
2、乘法結合律:三個數相乘,可以先把前兩個數相乘,再乘以第三個數,也可以先把后兩個數相乘,再乘以第一個數,積不變。(a×b)×c=a×b×c
乘法的這兩個定律往往結合起來一起使用。如:125×78×8的簡算
3、乘法分配律:兩個數的和與一個數相乘,可以先把這兩個數分別與這個數相乘,再把積相加。
(a+b)×c=a×c+b×c a-b×c=a×c-b×c
雞兔問題公式
(1)已知總頭數和總腳數,求雞、兔各多少:
(總腳數-每只雞的腳數×總頭數)÷(每只兔的腳數-每只雞的腳數)=兔數;
總頭數-兔數=雞數。
或者是(每只兔腳數×總頭數-總腳數)÷(每只兔腳數-每只雞腳數)=雞數;
總頭數-雞數=兔數。
例如,“有雞、兔共36只,它們共有腳100只,雞、兔各是多少只?”
解一(100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………雞。
解二(4×36-100)÷(4-2)=22(只)………雞;
36-22=14(只)…………………………兔。
(答略)
(2)已知總頭數和雞兔腳數的差數,當雞的'總腳數比兔的總腳數多時,可用公式
(每只雞腳數×總頭數-腳數之差)÷(每只雞的腳數+每只兔的腳數)=兔數;
總頭數-兔數=雞數
或(每只兔腳數×總頭數+雞兔腳數之差)÷(每只雞的腳數+每只免的腳數)=雞數;
總頭數-雞數=兔數。(例略)
(3)已知總數與雞兔腳數的差數,當兔的總腳數比雞的總腳數多時,可用公式。
(每只雞的腳數×總頭數+雞兔腳數之差)÷(每只雞的腳數+每只兔的腳數)=兔數;
總頭數-兔數=雞數。
或(每只兔的腳數×總頭數-雞兔腳數之差)÷(每只雞的腳數+每只兔的腳數)=雞數;
總頭數-雞數=兔數。(例略)
(4)得失問題(雞兔問題的推廣題)的解法,可以用下面的公式:
(1只合格品得分數×產品總數-實得總分數)÷(每只合格品得分數+每只不合格品扣分數)=不合格品數。或者是總產品數-(每只不合格品扣分數×總產品數+實得總分數)÷(每只合格品得分數+每只不合格品扣分數)=不合格品數。
例如,“燈泡廠生產燈泡的工人,按得分的多少給工資。每生產一個合格品記4分,每生產一個不合格品不僅不記分,還要扣除15分。某工人生產了1000只燈泡,共得3525分,問其中有多少個燈泡不合格?”
解一(4×1000-3525)÷(4+15)
=475÷19=25(個)
解二1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(個)(答略)
(“得失問題”也稱“運玻璃器皿問題”,運到完好無損者每只給運費××元,破損者不僅不給運費,還需要賠成本××元……。它的解法顯然可套用上述公式。)
(5)雞兔互換問題(已知總腳數及雞兔互換后總腳數,求雞兔各多少的問題),可用下面的公式:
〔(兩次總腳數之和)÷(每只雞兔腳數和)+(兩次總腳數之差)÷(每只雞兔腳數之差)〕÷2=雞數;
〔(兩次總腳數之和)÷(每只雞兔腳數之和)-(兩次總腳數之差)÷(每只雞兔腳數之差)〕÷2=兔數。
例如,“有一些雞和兔,共有腳44只,若將雞數與兔數互換,則共有腳52只。雞兔各是多少只?”
解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………雞
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
雞兔同籠
1、雞兔同籠屬于假設問題,假設的和最后結果相反。
2、“雞兔同籠”問題的解題方法
假設法:
①假如都是兔
②假如都是雞
③古人“抬腳法”:
解答思路:
假如每只雞、每只兔各抬起一半的腳,則每只雞就變成了“獨腳雞”,每只兔就變成了“雙腳兔”。這樣,雞和兔的腳的總數就少了一半。這種思維方法叫化歸法。
3、公式:
雞兔總腳數÷2-雞兔總數=兔的只數;
雞兔總數-兔的只數=雞的只數。
四則運算
1、加法、減法、乘法和除法統稱四則運算。
2、在沒有括號的算式里,如果只有加、減法或者只有乘、除法,都要從左往右按順序計算。
3、在沒有括號的算式里,有乘、除法和加、減法、要先算乘除法,再算加減法。
4、算式有括號,要先算括號里面的,再算括號外面的;括號里面的算式計算順序遵循以上的計算順序。
5、先乘除,后加減,有括號,提前算
關于“0”的運算
1、“0”不能做除數; 字母表示:a÷0錯誤
2、一個數加上0還得原數; 字母表示:a+0=a
3、一個數減去0還得原數; 字母表示:a-0=a
4、被減數等于減數,差是0; 字母表示:a-a=0
5、一個數和0相乘,仍得0; 字母表示:a×0=0
6、0除以任何非0的數,還得0; 字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商; 5÷0得不到商.(無意義)
四年級下冊數學知識點總結11
四則運算:加法、減法、乘法和除法統稱四則運算。
1、加減法的意義和各部分間的關系。
(1)把兩個數合并成一個數的運算,叫做加法。
加法各部分間的關系:和=加數+加數 加數=和-另一個數
(2)已知兩個數的和與其中一個加數,求另一個數的運算,叫做減法。
減法各部分間的關系:差=被減數-減數 減數=被減數-差 被減數=差+減數
(3)加法和減法是互逆運算。
2、乘除法的意義和各部分間的關系。
(1)求幾個相同加數的和的簡便運算,叫做乘法。
乘法各部分間的關系:積=因數×因數 因數=積÷另一個因數
(2)已知兩個因數的積與其中一個因數,求另一個因數的運算,叫做除法。
除法各部分間的.關系:商=被除數÷除數 除數=被除數÷商 被除數=商×除數
(3)乘法和除法是互逆運算。
3、關于“0”的運算
(1)“0”不能做除數;字母表示:a÷0錯誤
(2)一個數加上0還得原數;字母表示:a+0=a
(3)一個數減去0還得原數;字母表示:a-0=a
(4)被減數等于減數,差是0;字母表示:a-a=0
(5)一個數和0相乘,仍得0;字母表示:a×0=0
(6)0除以任何非0的數,還得0;字母表示:0÷a(a≠0)=0
(7)被減數等于減數,差是0。A-A=0被除數等于除數,商是1.A÷A=1(a不為0)
4、四則運算順序
(1)在沒有括號的算式里,如果只有加、減法或者只有乘、除法,都要從左往右按順序計算。
(2)在沒有括號的算式里,有乘、除法和加、減法、要先算乘除法,再算加減法。
(3)一個算式里既有小括號,又有中括號,要先算小括號里面的,再算中括號里面的,最后算括號外面的有括號,要先算括號里面的,再算括號外面的;括號里面的算式計算順序遵循以上的計算順序。
四年級下冊數學知識點總結12
一、加減法運算定律:
1、加法交換律:a+b=b+a
2、加法結合律:(a+b)+c=a+(b+c)
3、連減的性質: a-b-c=a-(b+c)。
二、乘除法運算定律:
1、乘法交換律:。a×b=b×a
2、乘法結合律:(a×b)× c = a× (b×c )
3、乘法分配律:
(1)兩個數的和與一個數相乘:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c
(2)兩個數的差與一個數相乘:(a-b)×c=a×c-b×c。
4、除法的性質:a÷b÷c=a÷(b×c)。
5、乘法分配律的.應用:
①類型一:(a+b)×c= a×c+b×c (a-b)×c= a×c-b×c
②類型二:a×c+b×c=(a+b)×ca×c-b×c=(a-b)×c
③類型三:a×99+a = a×(99+1)a×b-a= a×(b-1)
④類型四:a×99 a×102
= a×(100-1)= a×(100+2)
= a×100-a×1 = a×100+a×2
6、商不變性質:a÷b=(a×c)÷(b×c),a÷b=(a÷c)÷(b÷c)。
三、簡便計算
1.連減的簡便計算:
①連續減去幾個數就等于減去這幾個數的和。如:106-26-74=106-(26+74)
四年級下冊數學知識點總結13
不同位置觀察物體的范圍不同
不同位置觀察物體的形狀不同
節日禮物(不同位置觀察物體的范圍不同)
1、隨著觀察位置的高低與遠近變化,能判斷出觀察對象的畫面所發生的'相應變化。
2、根據觀察到的畫面,判斷出觀察者所在的位置。
天安門廣場(不同位置觀察物體的形狀不同)
1、通過觀察、比較一些照片,能夠識別和判斷拍攝地點與照片的對應關系。
2、通過觀察連續拍攝到的一組照片,能夠判斷照片拍攝的前后順序。
四年級下冊數學知識點總結14
【知識框架】
1、圖形分類(按不同標準給已知圖形進行分類)
三角形的分類(認識直角三角形、銳角三角形、鈍角三角形、等腰三角形、等邊三角形)
2、三角形 三角形內角和
三角形三邊之間的關系
3、四邊形的分類(初步認識梯形、進一步認識平行四邊形)
4、圖案欣賞
【知識要點】
圖形分類
1、按照不同的標準給已知圖形進行分類:
(1)按平面圖形和立體圖形分;
(2)按平面圖形時否由線段圍成來分的;
(3)按圖形的邊數來分。通過自己動手分類,對圖形進行再認識,了解圖形的特征。
2、了解平行四邊形易變形和三角形的穩定性在生活中的應用。
三角形分類
1、把三角形按照不同的標準分類,并說明分類依據。
(1)按角分,分為:直角三角形、銳角三角形、鈍角三角形,并了解其本質特征:三個角都是銳角的三角形是銳角三角形,有一個角是直角的三角形是直角三角形,有一個角是鈍角的三角形是鈍角三角形。
(2)按邊分,分為:等腰三角形、等邊三角形、任意三角形。有兩條邊相等的三角形是等腰三角形,三條邊都相等的三角形是等邊三角形。
2、通過分類,使學生弄清等腰三角形和等邊三角形的關系:等邊三角形是特殊
的等腰三角形。
三角形內角和
1、任意一個三角形內角和等于180度。
2、 能應用三角形內角和的性質解決一些簡單的問題。
三角形邊的.關系
1、 三角形任意兩邊之和大于第三邊。
2、根據上述知識點判斷所給的已知長度的三條線段能否圍成三角形。如果能圍
成三角形,能圍成一個什么樣的三角形。
四邊形的分類
1、通過觀察、比較、分類等活動,了解由四條線段圍成的圖形是四邊形,四邊形中有兩組對邊分別平行的四邊形是平行四邊形,只由一組對邊平行的四邊形是梯形。
2、知道長方形、正方形是特殊的平行四邊形。
3、了解正方形、長方形、等腰梯形、菱形、等腰三角形、等邊三角形、圓形是軸對稱圖形。
圖案 欣賞
1、通過欣賞圖案,體會圖形排列的規律,感受圖案的美。
2、利用對稱、平移和旋轉,設計簡單的圖案。
【四年級下冊數學知識點總結】相關文章:
初二數學下冊知識點總結11-11
初一數學下冊知識點總結11-22
初一數學下冊的知識點總結07-25
初二數學下冊知識點總結最新06-18
初一數學下冊知識點總結07-11
蘇教版四年級數學下冊知識點總結06-16
小學四年級數學下冊知識點總結01-17
四年級下冊數學知識點總結06-29
四年級下冊數學知識點總結06-07