第三單元 小數的意義和性質
教學內容:
小數的意義、性質、比較小數的大小、把非整萬(億)的大數改寫成以萬(億)為單位的小數。
教材分析:
在三年級初步認識一位小數,已經介紹了小數的整數部分和小數部分,學生已經知道小數點左邊是小數的整數部分,右邊是小數的小數部分。所以,在給出小數 344.725 以后, 教材提出問題 “整數部分是多少?小數部分的7在哪一位上, 表示多少?2和5呢?”引導學生分析小數的組成。這些問題應分兩段回答,先分別指出這個小數的整數部分與小數部分,再分別說出 7、2、5 所在的數位,各表示多少。
例題不要求分析整數部分的組成,因為這就是整數的組成,學生應該掌握得比較好。分析小數部分的組成是新知識,能整理小數部分的數位順序以及相應的計數單位,體驗小數的意義。
分析小數部分的組成,要從十分位開始,依次是百分位、千分位??要說清楚各個數位上的數是幾,表示幾個怎樣的單位。這樣的分析與整數的組成很相似,只是數位不同、計數單位不同而已。通過分析能加強對小數部分數位順序的體驗,進一步感受十進制計數法。就內容來說,小數的性質并不復雜,應用小數性質化簡小數也不難。但是,體驗小數性質的必然性和合理性,理解小數末尾添上 0 或者去掉 0,小數的大小為什么不變,卻不是很容易的。所以,教材安排兩道例題,幫助學生形成小數的 性質,并在理解的基礎上應用性質改寫相關小數。 聯系具體事實,體驗小數的末尾添上“0”或者去掉“0” ,小數的大小不變。 教材里的小數性質, 不是直接給學生的,而是引導學生在數學現象里發現和體驗 的。這樣的體驗不是一次兩次,而是反復多次,兩道例題安排在得出小數性質之前,練習題安排在得出小數性質之后。
教學目標:
1、知識與技能:使學生理解小數的意義,認識小數的記數單位,能正確讀寫小數。
2、過程與方法:使學生掌握小數的性質和小數點位置移動引起小數大小變化的規律。能夠比較小數的大小。
3、情感與態度:使學生掌握用四舍五入法求小數的近似數的方法。能按要 求正確地求出小數的近似數。
教學重點:
1、理解小數的意義。
2、掌握小數的性質和小數點位置移動引起小數大小變化的規律。
教學難點:理解小數的意義、掌握小數的性質。
教學策略:
1、以兩位小數的意義為主要研究對象 ,向前聯系一位小數與整數,往后發展到三位小數和四位小數,逐漸形成比較完整的小數概念以及記數方法。
2、教學小數的性質,突出對性質的體驗。首先體驗性質的合理,然后體驗性質的應用。
3、比較小數的大小,淡化統一的法則,鼓勵個性化思考。 教具學具準備:課件、計數器等。
課時安排:8 課時
第一課時 小數的意義和讀寫法
教學內容: P30-32 頁例1及相應的試一試,練一練,練習五的 1-5 題。
教學目標:
1、知識與技能:通過學習使學生在分數的基礎上認識小數,知道什么是小數,小數的意義,學會分數、小數的互化。
2、過程與方法:培養學生空間想象能力。
3、情感與態度:訓練學生思維的靈活性。
教學重點與難點: 小數的意義及小數與分數的聯系。
教學準備:多媒體課件
教學過程:
一、復習
用分數表示下面的數。
1 分米=( )米 1厘米=( )米 1毫米=( )米
二、教學例1
1、出示例1
1分米等于幾分之幾米?寫成小數是多少米?3 分米呢?你是怎樣想的?
2、教學兩位小數的讀法和意義
你能讀出下面的小數嗎?(鼓勵學生大膽嘗試)
0.01 讀作: 零點零一 0.12 讀作:零點一二
引導學生總結讀整數部分為 0 的小數的方法
兩位小數表示百分之幾。
3、進一步體會三位小數的讀法和意義:
0.001 讀作:零點零零一
0.040 讀作:零點零四零
0.105 讀作:零點一零五
從左往右依次讀出各位上的數
強調:小數部分的零要一個一個的讀,不能只讀一個零。
4、小結:我們知道了一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾。
那么同學們知道四位小數表示什么嗎?(學生回答)
5、試一試:學生自主填空,交流時注意讓學生根據小數的意義進行說明。
四、鞏固練習:
1、練一練:學生先獨立填寫,集體核對時讓學生說出小數的意義。
2、練習五的 1-5 題。(練習時讓學生自主練習, 指名回答時要培養學生完整回答并應用自己學過的知識闡明觀點的習慣與能力)
五、課堂小結: 這節課你有哪些收獲?還有什么疑問?
教學反思:
第二課時 小數的計數單位和數位順序表
教學內容: P32 頁例 2、例 3 及相應的試一試和練一練,練習五 6-11 題。
教學目標:
1、知識與技能:進一步理解、鞏固小數的意義。
2、過程與方法:使學生認真掌握小數數位順序表,知道數位、計數單位和相鄰兩個單位之間的關系。
3、情感與態度:訓練學生思維靈活性,培養學生熱愛數學的品質。
教學重點:數位順序表、計數單位及之間關系。
教學難點:計數單位的理解
學具:卡片 0、0、1、2 和小數點。
教學過程:
一、復習引入。
提問:十分之三寫成小數是?百分之五寫成小數是?千分之十二寫成小數 是? 0.6 表示什么意義?0.23 表示什么意義?0.125 表示什么意義?
二、出示例2
下面每個圖形都表示整數“1”3 上面的小數,再填空。 1、引導學生把 1 和 0.1 都看成相同單位的數量。 追問:1 里面有 ()個 0.1。1 里面有 ()個 0.01。 2、 你能用類似的方法探索 0.1 和 0.01 有什么關系?0.01 和 0.001 呢? 學生思考,然后在小組內交流,匯報交流結果。 3、小結:每相鄰兩個計數單位之間的進率都是 10。整數部分的 1 和小數 部分的 0.1 之間的進率也是 10。
三、學習例3
你能讀出下面橫線上的數嗎?344.725 提問: 這個數的整數部分是多少?“7”在哪一位上,表示多少?“2”和“5” 呢?小結:同整數一樣,小數的計數單位也按一定的順序排列起來,它們所 占的位置叫做小數的數位。
四、教學小數部分的數位順序和計數單位,整理出數位順序表。 教師:小數點右邊第一位是十分位,計數單位是十分之一(0.1) ;小數點右邊第二位是百分位,計數單位是百分之一(0.01) ;小數點右邊第三位是千分位,計數單位是千分之一(0.001)。每相鄰兩個計數單位間的進率都是10。
1、提問:(1)小數部分有一個數位,叫幾位小數?(讓學生舉例)。(2)小數部分有 4 個數位,叫幾位小數?(讓學生舉例)
小結:小數部分有幾個數位,叫做幾位小數。 提問:(1)0.7 表示什么?(2)0.26 表示什么?(3)0.008 表示什么? 反復口答練習,增強識記。
結論:一位小數的小數點右邊有一位,這一位是十分位;十分位上的數是幾表示幾個十分之一,十分位的計數單位是十分之一(0.1) 。兩位小數的小數點右邊有兩位,右邊第二位是百分位;百分位上的數是幾表示幾個百分之一,百分位 的計數單位是百分之一(0.01)
2、把書上的數位順序表填寫完整。填完后,交流。提問:
(1)順序表里整數部分的數位從各位起往什么方向排列,小數部分呢?
(2)小數點左邊第一位是什么,右邊第一位呢?
(3)百位和百分位分別是小數點哪邊的第幾位?
(4)1 個千是幾個百?10 個 10 是幾個百?
(5)0.1 是幾個 0.01?10 個 0.001 是幾個 0.01?
(6)1 里面有幾個 0.1,10 個 0.1 是多少?類似的問題多提問, 加強學生對整數和小數數位順序表以及計數單位之間關 系的理解。
五、試一試和練一練。 這部分內容是為了鞏固學生對于數位順序和計數單位的知識的理解,從而進一步理解小數的意義。 由于有了前面的鋪墊,所以這兩部分可以放手讓學生獨立 完成后進行交流。
六、鞏固練習:
1、練習五第 6 題。 學生獨立完成后訂正,并闡明自己的觀點。
2、練習五第 7 題。 獨立完成,教師關注兩位小數的位置。
3、練習五第 10 題。 獨立完成,指名口答。
4、練習五第 11 題。 學生拿出準備的卡片,老師讀要求,同學們在課桌上拼擺后讀一讀。 讓擺的又快又對的同學說說自己的小竅門。
七、課堂小結: 本節課你知道了哪些知識?還有什么疑問嗎?
八、課堂作業: 1、 練習五第 8、9 題。 板書設計:
教學反思:
第三課時 小數的性質
教學內容: P37-38 頁例4 和例5及相應的試一試和練一練,練習六 1---5 題。
教學目標:
1、知識與技能:通過教學、實踐使學生自己發現并掌握小數的性質。
2、過程與方法:培養學生的抽象概括能力,動手能力。
3、情感與態度:培養學生善于探索的精神。
教學重點與難點:發現小數的性質并對小數的性質作出抽象概括。
教學準備:多媒體課件。
教學過程:
一、復習引入:
1、準備題
(1)1 元 =( )角=( )分
(2)在下面( )里填適當的小數。
3 角=( )元 30 分=( )個 0.1元 100 毫米=( )米
引入:今天繼續研究小數。
二、體驗發現,理解性質。
1、課件出示例 4:
(1)讀題
(2)分組準備,討論。
(3)說出結果。
(4)為什么? 學生闡明自己的觀點。
①0.3 元和 0.30 元都是3 角,所以 0.3 元 = 0.30 元。
②畫圖理解。 0.3 元 = 0.30 元
③從小數的意義解釋。0.3 是3 個0.1,也就是30 個 0.01,0.30 也是30 個 0.01,所以 0.3=0.30。
(5)這兩個相等的小數,小數部分有什么不同? 提問:小數部分末尾的 0 添上或去掉,什么變了,什么沒變?
(小數的數位變了,小數的大小沒有變) 。
2、教學例 5:
先看圖填一填,再比較 0.100 米、0.10 米和 0.1 米的大小。
(1)學生自主填空。
(2)交流自己的看法,并闡明觀點。
(3)匯報自己的結果。 由1分米=10 厘米=100 毫米,得到 0.1=0.10=0.100。
(4)觀察板書:你得到什么結論?學生自由發言。
總結:小數的末尾填上"0"或去掉"0",小數的大小不變。這是小數的性質。
三、理解內涵,學會應用。
1、課件出示例 6:
學生自主填空。 提問:這些小數中,哪些 0 可以去掉?指名回答。 (著力于對小數"末尾" 的理解。 )
結論:根據小數的性質,通常可以去掉小數末尾的"0",把小數化簡。
學生嘗試做"試一試"。獨立完成,集體訂正。
2、練一練。不改變數的大小,把下面各數改寫成三位小數。 0.4=( ) 3.16=( ) 10=( ) 學生自主改寫。
3、書上第一題:照樣子在方框內里填上合適的小數? (給學生充分的交流時間,進一步體驗小數性質的應用)
4、練一練第 2 題:下面各數中,哪些 0 可以去掉,哪些不可以,為什么? (突出小數末尾的 0 才可以去掉)
四、鞏固練習。 練習六第1-5 題。
(第1、2 兩題鞏固并深化對小數性質的理解,突出去掉或添上"0"必須是小數末尾的 0。)
(第 3、 4、 5 題都是應用小數的性質改寫小數,其中有去掉末尾"0"化簡小數,也有在末尾添"0"增加小數部分的位數;有改寫小數,還有改寫商品的單價。這些練習題使學生在應用中掌握小數的性質。
五、小結。 本節課我通過......學習了......,了解了......,還有什么......?
教學反思:
第四課時 比較小數的大小
教學內容:P39 頁例 7 及相應的"試一試"和"練一練",練習六的 6-12 題。
教學目標:
1.使學生掌握比較小數大小的方法。
2.培養學生遷移類推的能力。
3.培養學生初步的數學意識和數學思想,使學生感悟到
數學知識的內在聯系。
教學重點:使學生掌握比較小數大小的方法。
教學難點:能熟練比較小數的大小
教學過程:
一、設疑激趣:
1.演示動畫"小數大小的比較".教師提問:三角尺和練習簿,那個貴一些?你是怎么想的?小數如何比較大小呢?(板書課題)
2.大膽猜測:舉例說明整數是如何比較大小的?(當整數的位數相同的時候,從高位比起;位數不同的時候,位數越多,數越大)
3.比較下面整數的大小:教師提問:根據你已有的知識經驗和你對小數的了解,能試著說一說小數怎樣比大小嗎? 二、嘗試探索:
1.教師提問:根據你的猜測,用你的方法比較下面兩組小數的大小,并說說你是怎樣想的?
(1) 9.7 元 和 5.9 元
(2)6.79 米和 6.85 米
2.學生匯報:
(1) 9.7 元是 9 元 7 角,而5.9 元是 5 元9角, 9元7角大于5元9角,所以9.7 元〉5.9 元;
(2)6.79 米是 6 米 7 分米 9 厘米,而 6.85 米是6 米 8 分米 5 厘米,
因為 6 米 7 分米 9 厘米<6 米 8 分米 5 厘米,
所以 6.79 米<6.85 米.
3.教師提問:這兩組小數是怎樣比較它們的大小的? (比較時是從整數部分開始比較,整數部分大,這個小數就大,整數部分相 同,就比較十分位,十分位大,這個數就大.)
4.比較下面各小數的大小,你又有什么發現?
(例 7) 0.6 元和 0.48 元
學生匯報:
(1)0.6 元是 6 角,0.48 元是 4 角 8 分,所以 0.6>0.48。
(2)0.6 是 60 個 0.01,0.48 時 48 個 0.01,所以 0.6>0.48。
5.教師歸納怎樣比較小數的大小:先看整數部分,整數部分大的數就大;整數部分相同的,十分位上的數 大的小數就大;十分位上的數相同的,再比較百分位上的數,以此類推.
6.教師:我們歸納出來的比較小數大小的方法與你最初的猜測相比,有什 么不同?
三、試一試.
1、完成"試一試"的練習,在小組里說說比較小數大小的方法。
2.兩個同學一組,一人任意說出兩個小數,另一人比較小數的大小.要求 小數的位數不超過四位.
四、鞏固練習:
1、完成“練一練"的題目。
2、判斷:(1)6.809>6.799( ) (3)38.748<38.75( )
3、完成練習六中的 6、9、10、12 題。
五、課堂小結:通過這節課的學習,同學們已經掌握了小數的大小比較的方法,希望能用我 們所學的知識去解決生活中的一些實際問題.
六、家庭作業:
1、練習六第 7、8、11 題。
2、下面的小數各在哪兩個相鄰的整數之間?
(1)□<1.8<□ (2)□>23.47>□
(3)□<5.006<□ (4)□>70.02>□
教學反思:
在教學活動中,能給學生營造寬松、民主、和諧的學習氛圍,有利于減輕學生的精神負擔,使學生在學習中,提高學習積極性。
不足:
有的地方講得太多,還不夠放手,應該充分發揮學生的主體作用。另外,在設計小數時,由于只注重了情境,所以小數都帶著單位名稱,小數的范圍不夠廣泛。學生在語言敘述小數怎樣比較大小的方法時,說的不夠好,還要繼續培養。
第五課時:用“萬”“億”作單位的小數
教學內容:p42頁例8及相應的“試一試”和“練一練”,練
習七1-4題。
教學目標:
1、掌握把較大的數改寫成用“萬”或“億”作單位的小數的方法,能正確進行改寫。
2、使學生經歷用小數描述生活現象、解決簡單實際問題的過程,感受小數與現實生活的密切聯系。
教學重難點: 會把一個大數目改寫成用“萬”“億”作單位。 教學過程:
一、復習導入:
1、口答:3840000=( )萬 34900000000=( )億
說說是怎樣把這些大數目改寫成用萬或億作單位的數的。
2、導入:在日常生活中,為了方便,我們常常用“萬”或“億”作單位的數來表示一些大數目。今天,我們要繼續研究用“萬”或“億”作單位的數來表示一些大數目。
二、探究新知
1、學習例 8(1)
讀題后出示要求:(1)把 384400 改寫成用“萬”作單位的數是多少?
讓學生思考后先說一說,也可以把遇到的困難說一說。 如有困難,師啟發:
(1)讀讀這個數。想想:384400 接近多少萬?如果把這個數改寫成用“萬”作單位的數,結果是整數還是小數?
(2)如果學生認為是38 萬,問:這個結果是準確數還是近似數?明確:按要求改寫的結果應該是一個小數。
(3)問:這個小數的整數部分和小數部分分別是多少?
(4)得出結論后,強調:小數后面應添寫“萬”字。
2、比較改寫前后的兩個數:
思考討論: 改寫后得到的小數的小數點是在原來整數哪一位的右邊?
3、學習例 8(2) 出示要求:把 149600000 改寫成用“億”作單位的數是多少?
(1)讓學生獨立嘗試,說說怎樣想的。
(2)歸納方法:問:你想提醒大家注意什么?
4、 “試一試” 出示題目,學生讀題后獨立完成,集體交流。 明確:改寫后的數比“1”小時,整數部分寫“0”。
5、練一練 學生獨立完成后,集體校對,說說有什么要提醒大家注意的。 強調:如果原數的位數不夠,改寫時要用“0”補足。
6、歸納把一個數改寫成用用“萬”或“億”作單位的數的方法:問:如何把一個數改寫成用“萬”或“億”作單位的數?
明確:(1)改寫時可以直接在原數的萬位或億位后面點上小數點,同時要在改寫的 小數后面添上“萬”或“億”字。
(2)如果原數的位數不夠,改寫時要用“0”補足。
三、鞏固練習:
練習七 1-4(做在書上)
(1)學生根據每道題的具體要求分別進行改寫練習。
(2)引導學生將改寫前后的數進行比較,說說自己的體會,進一步感受用“萬” 或“億”作單位的小數表示大數目更加簡潔,增強數感。
四、課堂總結:通過這節課的學習,你有什么收獲?
第六課時:求一個小數的近似數
教學內容:求一個小數的近似數
教學目標:
1、會根據要求用“四舍五入”的方法求一個小數的近似數,會用近似數描述 生活中常見事物的數量。
2、 使學生進一步體會數學在日常生活中的廣泛應用,感受數學的文化價值。
教學重難點:用“四舍五入法“保留一定的小數位數,求出小數的近似數。
教學過程:
一、復習導入:
1、用“四舍五入法”求下列各數的近似數。7936(精確到百位) 16493(精確到個位)(學生回答后說說是怎樣想的)
2、導入:我們已經回用“四舍五入”法求整數的近似數。今天我們要來學習求小數的近似數。(板書課題)
二、探究新知:
1、學習例 9。
出示例 9:地球和太陽之間的平均距離大約是1.496 億千米。 精確到十分位是多少億千米?
(1)討論第一個問題。依次說說: 精確到十分位要保留幾位小數?要看小數的哪一位?怎樣確定近似數?
明確:①精確到十分位就是要保留一位小數,只要看百分位上的數。百分位上的“9”大于 5,所以向十分位進 1。 ②得到的1.5 是近似數,所以要用“≈”連接。
(2)討論第二個問題(讓學生回答后說說是怎么想的,再次強調得數用“≈”連接)。
(3)思考討論:比較近似數 1.5 和 1.50,哪一個更精確一些?近似數 1.50 末尾的“0”精確到百分位是多少億千米?能去掉嗎?為什么?引導學生結合例題中取近似數的過程說說體會。 明確:1.5 是精確到十分位的結果,而 1.50 是精確到百分位的結果。所以 1.50 要比 1.5 更精確一些,正因為如此,所以近似數 1.50 末尾的“0”是不能去掉的。
2、“試一試”學生獨立完成后交流,說說是怎么想的。
3、歸納方法:問:通過剛才的學習,你覺得怎樣求一個小數的近似數?要注意些什么?明確:
(1)先要弄清楚保留幾位小數;
(2)根據要求確定看哪一位上的數;
(3)用“四舍五入”的方法求得結果。
強調:要正確使用“≈” 。
三、鞏固練習:
1、練一練1, 獨立完成。 強調:把 2.962 精確到十分位時,不能丟掉結果末尾的“0” 。
2、練習七第5題。 出示,指名板演,其余獨立完成。 集體交流,注意把 9.9674 分別保留一位小數、兩位小數的結果,根據情況適當加以指導。
3、練習七第7題。(1)出示題目,學生獨立完成左邊一組后交流,說說怎樣想的,要提醒大家 注意什么。(2)獨立完成右邊一組。集體交流。
4、練習七第6題。(1)提醒學生看清要求,獨立完成前兩項。指名板演。(2)集體交流,注意格式和單位。
5、練習七第8題, 提醒學生看清要求。指導完成總產量的改寫,并保留一位小數。注意格式。
教學反思:學生對于保留整數就是看十分位上的數是否滿5,但對于精確到十分位就是保留整數的逆向理解有些困難。
第七課時:整理與練習
教學內容:整理與練習(一)
教學目標: 通過回顧與整理,使學生進一步加深對小數意義的理解,并理清本單元數學知識的脈絡,建立合理的認知結構,培養學習的自信心,激發熱愛數學的情感。
教學重難點:小數意義和性質。
教學過程:
一、回顧與整理
1、想想這一單元,你學習哪些數學知識?你是怎么獲得這些知識的?先在小組內交流,然后全班交流。 2、出示下列問題:
(1)舉例說說小數和分數的聯系。
(2)小數的性質是什么?你能聯系實際說一說嗎?
(3)小數和整數有什么相同點?
A:小數與分數的聯系,明確:
①小數是特殊的分數,分母是10、100、1000的分數分別可以寫成一位、兩位、三位的小數;
②小數的計數單位分別是十分之一、百分之一、千分之一等。
B:小數與整數的相同點:
①小數和整數相鄰計數單位的進率都是10;
②寫小數和寫整數一樣,都要從高位寫起。
二、練習與應用
1、第1題 讓學生看清題意后直接做在書上。集體交流,說說:(1)右邊達到小數與左邊的小數有什么不同?(2)寫出的三個小數為什么有一位小數,又有兩位小數?
2、第 2 題(1)指導學生觀察直線上的每一大格都被平均分成幾份,每一大格表示0.1,每小格表示怎樣的小數? (2)想想填的數在直線上標出的哪兩個小數之間。(3)學生填寫后交流。(4)讓學生按順序讀一讀。
3、第3題,重點指導臺秤和體溫計的填寫
(1)指導學生看懂臺秤盤面上顯示的重量。問:根據臺秤盤面上的指針的位置,你能估計一下雞蛋的重量在什么范圍 嗎?臺秤盤面上的每一小格表示多少重量?這些雞蛋有多重?
(2)指導學生看懂體溫計。先讀一讀體溫計上標出的刻度,再看每一攝氏度之間被平均分成了多少份,每一小格表示多少攝氏度?圖中測出的體溫應是多少?
(3)學生獨立填寫其余的圖。交流。奶糖價格是12.50 元 體溫是36.5 攝氏度
4、第4題
(1)在小小組中讀一讀題中的數,并說說是幾位小數,每個數中的“5”各 表示多少。
(2)全班交流,體會相同的數在不同的數位上所表示的數值是不同的。
5、第5題(直接填在書上),集體訂正。雞蛋重 0.7 千克 鋼筆的長是 0.135 米
三、看書質疑
四、總結
第八課時 整理與練習
教學內容:整理與練習(二)
教學目標:
使學生能綜合運用學到的知識解決實際問題,并在實踐中更好地體會數學與生活的聯系,感受數學的應用價值,進一步培養學生自主探究的能力。通過對自己的學習情況作恰當的評價,培養學習的自信心。
教學重、難點:小數的改寫和求近似數。
教學過程:
一、練習與應用: (練習七/6-8)
1、第 6 題。出示題目。學生獨立比較,填在書上。指名板演。 集體交流,說說是怎樣比的。明確:比較小數的大小, 一般先比較整數部分的數,再依次比較小數部分的十分位、 百分位上的數
2、第7題。出示:把下面各數按從小到大的順序排列起來 0.6 0.506 0.056 0.065 0.56
(1)讀讀各數,說說怎樣比較。(先比較每個小數十分位上的數,根據比較的結果把這些小數按大小分成三組,再分別比較其中的兩個數,最后確定這五個小數的大小順序。
(2)讓學生按此方法嘗試排列。
(3)交流排列情況。
0.056 < 0.065 < 0.506 < 0.56 < 0.6
3、第 8 題
(1)讓學生看清要求后嘗試完成。指名板演。
(2)交流,注意格式及符號、單位。
(3)把改寫成的用“億”作單位的小數與近似數作比較,體會這兩種形式的數在表示的數目時的不同特點及作用。 二、探索與實踐
1、第 9、10 兩題,在課前要求學生分小組進行實際的調查和測量。身高和跳遠成績的測量可以與體育課結合。也可以讓學生調查其他一些日常生活用品的價格,如肉、禽、蛋、蔬菜、水果的價格等。要求學生認真記錄測量得到的數據。 課上進行交流,說說活動中的體會。
三、思考題:出示:
(1)大于 0.1 而小于0.2的兩位小數有多少個?
(2)大于0.1而小于0.2 的小數有多少個?
先看第1個問題。讓學生說說大于0.1而小于0.2的兩位小數有哪些。
問:你能有條理地列出來嗎? 板:0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19
再看看第二個問題和第一個問題有什么不同?
討論:你還能找出大于0.11而小于0.12 的小數嗎?有沒有大于 0.111 而小于 0.112 的小數? 想想,大于 0.1 而小于 0.2 的小數有多少個?(也可以引導學生結合數軸有條理地寫出大于 0.1 而小于 0.2 的兩位小數,再啟發學生進一步認識到0.1和0.2 之間還可以有很多的三位小數、四位小數等,從而體會到大于 0.1 而小于 0.2 的小數有無數個。)