亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

正比例和反比例的意義 教案教學設計(人教新課標六年級下冊)

發布時間:2016-3-24 編輯:互聯網 手機版

 

第一課時

教學內容:P39~41  成正比例的量

教學要求:1、使學生理解正比例的意義,能根據正比例的意義判斷是不是成正比例。

2、培養學生概括能力和分析判斷能力。

3、培養學生用發展變化的觀點來分析問題的能力。

教學重點:成正比例的量的特征及其判斷方法。

教學難點:理解兩個變量之間的比例關系,發現思考兩種相關聯的量的變化規律.

教學過程:

一、四顧舊知,復習鋪墊

1、已知路程和時間,求速度

2、已知總價和數量,求單價

3、已知工作總量和工作時間,求工作效率

二、引導探索,學習新知

1、教學例1:

出示:一列火車1小時行駛90千米,2小時行駛180千米,

3小時行駛270千米,4小時行駛360千米,

5小時行駛450千米,6小時行駛540千米,

7小時行駛630千米,8小時行駛720千米……

(1)出示下表,填表

一列火車行駛的時間和路程

時間

路程

填表,思考:在填表中你發現了什么?

時間變化,路程也隨著變化,我們就說時間和路程是兩個相關聯的量。(板書:兩種相關聯的量)

根據計算,你發現了什么?

相對應的兩個數的比的比值一樣或固定不變,在數學上叫做一定。

用式子表示他們的關系是:路程/時間=速度(一定)(板書)

(2)教師小結:

同學們通過填表,交流,知道時間和路程是.兩種相關聯的量,路程隨著時間的變化而變化.時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。即:路程/時間=速度(一定)

2、教學例2:

(1)花布的米數和總價表

數量 1 2 3 4 5 6 7 ……

總價 8.2 16.4 24.6 32.8 41.0 49.2 57.4 ……

(2)觀察圖表,發現什么規律?

用式子表示它們的關系:總價/米數=單價(一定)

3、抽象概括正比例的意義。

(1)比較例1、例2,思考并討論:這兩個例題有什么共同點?

(2)兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關系叫做正比例關系。

(3)看書P39,進一步理解正比例的意義。

(4)如果用x和y表示兩種相關聯的量,用k表示它們的比值(一定),正比例關系怎樣用字母表示出來?

         x/y=k(一定)

(5)根據正比例的意義以及表示正比例的式子想一想:構成正比例關系的兩種量必須具備哪些條件?

4、看書P40例2。

(1)題中有幾種量?哪兩種量是相關聯的量?

(2)體積和高度的比的比值是多少?這個比值是什么?是不是一定?

(3)它們的數量關系式是什么?

(4)從圖中你發現了什么?

(5)不計算,根據圖像判斷,如果杯中水的高度是7厘米,那么水的體積是多少?225立方厘米的水有多高?

三、課堂小結:

什么是成正比例的量?它必須具備什么條件?怎樣判斷成正比例的量?

四、課堂練習:

1、P41做一做

2、P43~44練習七第1~5題。

第二課時

教學內容:P42  成反比例的量

教學目的:1、理解反比例的意義,能根據反比例的意義,正確的判斷兩種量是否成反比例。

2、通過引導學生討論探究,分析合作,使學生進一步認識事物之間的聯系和發展變化的規律。

3、初步滲透函數思想。

教學重點:引導學生總結出成反比例的量,是相關的兩種量中相對應的兩個數積一定,進而抽象概括出成反比例的關系式.

教學難點:利用反比例的意義,正確判斷兩個量是否成反比例.

教學過程:

一、復習鋪墊

1、下面兩種量是不是成正比例?為什么?

購買練習本的價錢0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.

2、成正比例的量有什么特征? Xkb1.com

二、探究新知

1、導入新課:這節課我們繼續學習常見的數量關系中的另一種特征--成反比例的量。

2、教學P42例3。

(1)引導學生觀察上表內數據,然后回答下面問題:

A、表中有哪兩種量?這兩種量相關聯嗎?為什么?

B、水的高度是否隨著底面積的變化而變化?怎樣變化的?

C、表中兩個相對應的數的比值各是多少?一定嗎?兩個相對應的數的積各是多少?你能從中發現什么規律嗎?

D、這個積表示什么?寫出表示它們之間的數量關系式

(2)從中你發現了什么?這與復習題相比有什么不同?

A、學生討論交流。

B、引導學生回答:

(3)教師引導學生明確:因為水的體積一定,所以水的高度隨著底面積的變化面變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就說高度和底面積成反比例關系,高度和底面積叫做成反比例的量。

(4)如果用字母x和y表示兩種相關的量,用k表示它們的積一定,反比例可以用一個什么樣的式子表示?板書:x×y=k(一定)

三、鞏固練習

1、想一想:成反比例的量應具備什么條件?

2、判斷下面每題中的兩個量是不是成反比例,并說明理由。

(1)路程一定,速度和時間。

(2)小明從家到學校,每分走的速度和所需時間。

(3)平行四邊形面積一定,底和高。

(4)小林做10道數學題,已做的題和沒有做的題。

(5)小明拿一些錢買鉛筆,單價和購買的數量。

(6)你能舉一個反比例的例子嗎?

四、全課小節

這節課我們學習了成反比例的量,知道了什么樣的兩個量是成反比例的兩個量,也學會了怎樣判斷兩種量是不是成反比例。

五、課堂練習

P45~46練習七第6~11題。

第三課時

教學內容:正比例和反比例的比較

教學目標:1、進一步理解正比例和反比例的意義,弄清它們的聯系和區別。掌握它們的變化規律。

         2、使學生能正確判斷正、反比例。

         3、發展學生分析、比較、抽象、概括能力,激發學生的學習興趣。

教學難點:正反比例的聯系和區別 。

教學重點:能判斷正、反比例。

教學過程:

一、復習:

判斷:下面每組中的兩個量成什么關系?

1、單價一定,數量和總價。

2、路程一定,速度和時間。

3、正方形的邊長和它的面積。

4、時間一定,工效和工作總量。

二、新知:

1、出示課題:

2、教學補充例題

出示表1

路程(千米) 5 10 25 50 100

時間(時) 1 2 5 10 20

表2

速度(千米/時) 100 50 20 10 5

時間(時) 1 2 5 10 20

分組討論、交流:說一說怎樣想的,同時填空。引導學生討論回答。

總結路程、速度、時間三個量中每兩個量之間的比例關系。

速度×時間=路程    =速度   =時間

判斷:

(1)速度一定,路程和時間成什么比例?

(2)路程一定,速度和時間成什么比例?

(3)時間一定,路程和速度成什么比例?

3、比較正比例、反比例的關系

正反比例的相同點:都有兩種相關聯的量,一種量隨著另一種量變化。

不同點:正比例使變化相同,一種量擴大或縮小,另一種量也擴大或縮小。相對應的每兩個數的比值(商)一定,反比例是變化相反,一種量擴大(或縮小),另一種量反而縮小(擴大)相對應的每兩個量的積一定。

三、鞏固練習

1、做一做

判斷單價、數量和總價中的一種量一定,另外兩種量成什么關系。為什么?

單價一定,數量和總價-

總價一定,數量和單價-

數量一定,總價和單價-

2.判斷下面一些相關聯的量成什么比例?為什么?

(1)除數一定,        和       成       比例。

     被除數-定,       和       成       比例。

(2)前項一定,       和       成       比例。

(3)后項一定,       和       成       比例。

(4)長方形的長、寬和面積三總量,如果長是一定的,寬和面積成正例關系。這三種量再什么條件下還能組成比例關系,是哪種比例關系。