亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

高二上數學教學計劃

時間:2023-01-10 18:17:20 數學教學計劃 我要投稿

高二上數學教學計劃15篇

  時間過得可真快,從來都不等人,前方等待著我們的是新的機遇和挑戰,寫一份計劃,為接下來的學習做準備吧!計劃怎么寫才能發揮它最大的作用呢?下面是小編收集整理的高二上數學教學計劃,歡迎大家借鑒與參考,希望對大家有所幫助。

高二上數學教學計劃15篇

高二上數學教學計劃1

  一、現狀分析:

  1、 本年級學生由25個班分成10個文科班和15個理科班,學生構成進行了重新組合。

  2、 經過上期全組教師的共同努力,全年級的數學平均成績由高一上期的與瀘高相比相差7個百分點降為只差3個百分點。

  3、 瀘州市的其它學校在暑假都進行了補課,而我校沒有,教學進度整整相差一個月。

  4、 上學期年級組在教學時間的安排上對數、理、化、英進行了傾斜,練習和復習時間相對較多。

  二、教學目標:

  1、 順利完成高二上期的教學內容,并完成下冊《排列與組合》的教學。爭取有二到三周的時間進行復習。

  2、 高二聯考平均成績理科與市內國示高中相比相差不得超過3分,文科要高于5分,入圍人數要達到年級的平均水平。

  3、 數學競賽要完成高一和高二上期所學內容的教學,爭取能完成平面幾何的教學。

  三、教學措施。

  1、認真落實,搞好集體備課。每周至少進行一次集體備課。將全組教師分成4個組(第一組:王兵,楊述剛,冷昌才;第二組:涂海,馮玉平,任利紅;第三組:周鈺,陳容芳,馬駿峰;第四組:彭正楷,唐小琳,石慶洪)各組老師根據自已承擔的任務,提前一周進行單元式的備課,并出好本周的單頁練習。教研會時,由一名老師作主要發言人,對本周的教材內容作分析,然后大家研究討論其中的重點、難點、教學方法等。

  2、詳細計劃,保證練習質量。教學中用配備資料《聚焦課堂》,要求學生按教學進度完成相應的習題,教師要提前向學生指出不做的題,以免影響學生的時間,每周以內容“滾動式”編兩份練習試卷,做后老師要收齊批改,存在的普遍性問題要安排時間講評。

  3、抓好第二課堂,穩定數學優生,培養數學能力興趣。競賽班的教學進度要加快,教學難度要有所降低,各班要培育好本班的優生,注意激發學生的學習興趣,隨時注意學生學習方法的指導。

  4、加強輔導工作。對已經出現數學學習困難的學生,教師的下班輔導十分重要。教師教學中,要盡快掌握班上學生的數學學習情況,有針對性地進行輔導工作,既要注意照顧好班上優生層,更不能忽視班上的困難學生。

高二上數學教學計劃2

  一、指導思想

  1、培養學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力。

  2、根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神。

  3、使學生具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯系和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

  二、目的要求

  1。深入鉆研教材,以教材為核心,“以綱為綱,以本為本”深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系和網絡結構,細致領會教材改革的精髓,把握通性通法,逐步明確教材對教學形式、內容和教學目標的影響。

  2。因材施教,以學生為學習的主體,構建新的認知體系,營造有利于學生學習的氛圍。

  3。加強課堂教學研究,科學設計教學方法,扎實有效的提高課堂教學效果,全面提高數學教學質量。

  三、具體措施

  1。不孤立記憶和認識各個知識點,而要將其放到相應的體系結構中,在比較、辨析的過程中尋求其內在聯系,達到理解層次,注意知識塊的復習,構建知識網路。注重基礎知識和基本解題技能,注意基本概念、基本定理、公式的辨析比較,靈活運用;力求有意識的分析理解能力;尤其是數學語言的表達形式,推力論證要思路清晰、整體完整。

  2。學會分析,首先是閱讀理解,側重于解題前對信息的捕捉和思路的探索;其次是解題回顧,側重于經驗及教訓的總結,重視常見題型及通法通解。

  3。以“錯”糾錯,查缺補漏,反思錯誤,嚴格訓練,規范解題,養成:想明白,寫清楚,算準確的習慣,注意思路的清晰性、思維的嚴謹性、敘述的條理性、結果的準確性,注重書寫過程,舉一反三,及時歸納,觸類旁通,加強數學思想和數學方法的應用。

  4。協調好講、練、評、輔之間的關系,追求數學復習的最佳效果,注重實效,努力提高復習教學的效率和效益;精心設計教學,做到精講精練,不加重學生的負擔,避免“題海戰” ,精心準備,講評到為,做到講評試卷或例題時:講清考察了那些知識點,怎樣審題,怎樣打開解題思路,用到了那些方法技巧,關鍵步驟在那里,哪些是典型錯誤,是知識和是邏輯,是方法、是心理上、策略上的錯誤,針對學生的錯誤調整復習策略,使復習更加有重點、針對性,加快教學節奏,提高教學效率。

  5。周密計劃合理安排,現數學學科特點,注重知識能力的提高,提升綜合解題能力,加強解題教學,使學生在解題探究中提高能力。

  6。多從“貼近教材、貼近學生、貼近實際”角度,選擇典型的數學聯系生活、生產、環境和科技方面的問題,對學生進行有計劃、針對性強的訓練,多給學生鍛煉各種能力的機會,從而達到提升學生數學綜合能力之目的。不脫離基礎知識來講學生的能力,基礎扎實的學生不一定能力強。教學中,不斷地將基礎知識運用于數學問題的解決中,努力提高學生的學科綜合能力。

  新的學期是新的起點,新的希望。通過上面的計劃,我相信自己在本學期一定能夠將兩個班的數學成績帶上去,我相信,我能行。

高二上數學教學計劃3

  教學目標;

  (1)了解頻數、頻率的概念,了解全距、組距的概念;

  (2)能正確地編制頻率分布表;會用樣本頻率分布去估計總體分布;

  (3)通過對現實生活的探究,感知應用數學知識解決問題的方法,理解數形結合的數學思想和邏輯推理的數學方法、

  教學重點:正確地編制頻率分布表、

  教學難點;會用樣本頻率分布去估計總體分布

  內容分析

  1、在統計中,用樣本的有關情況估計總體的相應情況大體上有兩類:一是用樣本的頻率分布去估計總體分布;二是用樣本的某種數字特征去估計總體相應數字特征。本節課解決前者的問題。

  2、討論樣本頻率分布的內容在初中”統計初步”中進行了簡要的介紹,由于很長時間沒有接觸這方面知識,因此有必要通過一例重溫頻率分布有關知識,突出掌握解決問題的步驟,使學生了解處理數據的具體方法。

  3、介紹歷史上從事拋擲硬幣的幾個案例,學習科學家對真理執著追求的精神。

  4、頻率分布的條形圖與直方圖是有區別。條形圖是用高度來表示頻率,直方圖是用面積來表示頻率。

  教學過程

  1、引入新課

  (1)介紹對“拋擲硬幣”試驗進行研究的科學家。

  (2)本次試驗結果。

  (3)畫出頻率分布的條形圖。

  (4)注意點:①各直方長條的寬度要相同;②相鄰長條之間的間隔要適當。

  (5)結論:當試驗次數無限增大時,兩種試驗結果的頻率大致相同。

  2、總體分布

  精確地反映了總體取值的概率分布規律。研究概率分布往往可以研究其頻數分布、頻率分布,及累積頻數分布和累積頻率分布。后者作為閱讀教科書內容。

  3、復習頻率分布

  (演示)問題:有一個容量為20的樣本,數據的分組及各組的頻數如下:

  [12、5,15、5) 2 [15、5,18、5) 3 [18、5,21、5) 5

  [21、5,24、5) 4 [24、5,27、5) 1 [27、5,30、5] 5

  (1)列出樣本的頻率分布表和畫出頻率分布直方圖。

  (2)頻率直方圖的橫軸表示___________;縱軸表示___________。頻率分布直方圖中,各小矩形的面積等于___________,各小矩形面積之和等于___________。頻率直方圖的主要作用是___________。

  講解例題

  為了了解學生身體的發育情況,對某重點中學年滿17歲的60名男同學的身高進行了測量,結果如下:

  身高 1、57 1、59 1、60 1、62 1、64 1、65 1、66 1、68

  人數 2 1 4 2 4 2 7 6

  身高 1、69 1、70 1、71 172 1、73 1、74 1、75 1、76 1、77

  人數 8 7 4 3 2 1 2 1 1

  (1)根據上表,估計這所重點中學年滿17歲的男學生中,身高下低于1、65m且不高于1、71m的約占多少?不低于1、63m的約占多少?

  (2)畫出頻率分布直方圖,說出該校年滿17歲的男同學中身高在哪個范圍內的人數所占比例最大?如果該校年滿17歲的男同學恰好是300人,那么在這個范圍內的人數估計約有多少人?

  (過程略)

  注意點:主要包括兩部分:前面重點講解如何根據數據畫出頻率分布的直方圖,后面重點講解如何根據樣本的頻率分布去估計總體的相關情況。

  (a)計算最大值與最小值的差

  (b)確定組距與組數。

  組距的確定應根據數據總體情況,自主選擇。本題將組距定為2較為合適,因而組數為11。

  (c)決定分點。

  分點要比數據多一位小數,便于分組。分組區間采用左閉右開。

  (d)列出頻率分布表(見教科書)。

  (e)畫出頻率分布圖(見教科書)。

  4、得到樣本頻率后,應對總體的相應情況進行估計

  5、課堂練習

  教科書習題 1、2第2題。

  板書設計

  一、概念理解 二、應用

  1、頻數、頻率的容量的關系 例

  2、頻率的取值范圍 三、小結

  3、分布頻率分布表

  四、作業

高二上數學教學計劃4

  一、 指導思想:

  1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。

  2.提高空間想像、抽象概括、推理論證、運算求解。

  3.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。

  4.發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。

  5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。

  二、教學目標:

  (一)情意目標 :

  (1)通過分析問題的方法的教學,培養學生的學習興趣。

  (2)提供生活背景,通過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。

  (3)在探究中體驗獲得數學規律的艱辛和樂趣,在分組研究合作的學習中學會交流、相互評價,提高學生的合作意識 。

  (二)能力要求 :

  (1)通過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養對數學本質問題的背景事實及具體數據的記憶。

  (2)通過揭示所學內容中的有關概念、公式和圖形的對應關系,培養記憶能力。

  (3)通過教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。

  (4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。

  (5)利用數形結合,另辟蹊徑,提高學生運算能力。

  三、教學內容

  本學期教學內容有立體幾何、解析幾何、邏輯知識和圓錐曲線、二元一次不等式(組)與簡單的線性規劃。

  立體幾何是研究的是物體的形狀、大小與位置關系。通過直觀感知、操作確認、思辨論證、等方法認識和探索幾何圖形及其性質。通過學習,培養和發展學生的空間想象能力、推理論證能力、運用圖形語言進行交流的能力以及幾何直觀能力。

  直線和圓是用代數方法研究圖形的幾何性質,體現了數形結合的重要數學思想。在平面直角坐標系中建立直線和圓的代數方程,運用代數方法研究它們的幾何性質及其相互位置關系,并了解空間直角坐標系,體會數形結合的思想,初步形成用代數方法解決幾何問題的能力。

高二上數學教學計劃5

  一、指導思想:

  在學校教學工作意見指導下,在學部工作的框架下,認真落實學校對備課組工作的各項要求,嚴格執行學校的各項教育教學制度和要求,強化數學教學研究,提高全組老師的教學、教研水平,明確任務,團結協作,圓滿完成教學教研任務。具體目標如下。

  1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。

  2、提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。

  3、提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。

  4、發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。

  5、提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。

  6、具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

  二、學生基本情況:

  高二傾理學生共有166人,學生學習數學的氣氛不濃、基礎很差。由于學生對學過的知識內容不及時復習,致使對高二的數學學習有很大的影響,高一數學成績充分反映沒有尖子生,成績特差的學生也有不少,有一批思維相當靈活的學生,但學習不夠刻苦,學習成績一般,但有較大的潛力,以后好好的引導,進一步培養他們的學習興趣,從而帶動全班同學的學習熱情,提高學生的數學成績。

  三、教法分析:

  1、選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生看個究竟的沖動,以達到培養其興趣的目的。

  2、通過觀察,思考,探究等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。

  3、在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養成其邏輯思維的習慣。

  四、教學措施:

  1、認真落實,搞好集體備課。每周至少進行一次集體備課。各組老師根據自已承擔的任務,提前一周進行單元式的備課,并出好本周的單頁練習。教研會時,由一名老師作主要發言人,對本周的教材內容作分析,然后大家研究討論其中的重點、難點、教學方法等。

  2、詳細計劃,保證練習質量。教學中用配備資料《創新設計》,要求學生按教學進度完成相應的習題,教師要提前向學生指出不做的題,以免影響學生的時間,每周以內容滾動式編兩份練習試卷,做后老師要收齊批改,存在的普遍性問題要安排時間講評。

  3、抓好第二課堂,穩定數學優生,培養數學能力興趣。競賽班的教學進度要加快,教學難度要有所降低,各班要培育好本班的優生,注意激發學生的學習興趣,隨時注意學生學習方法的指導。

  4、加強輔導工作。對已經出現數學學習困難的學生,教師的下班輔導十分重要。教師教學中,要盡快掌握班上學生的數學學習情況,有針對性地進行輔導工作,既要注意照顧好班上優生層,更不能忽視班上的困難學生。

高二上數學教學計劃6

  (一)20xx年秋季班高二數學大綱

講次高二理科
第1講計數原理
第2講概率初步
第3講必修模塊復習(一) (集合、函數)
第4講必修模塊復習(二) (三角函數與正余弦定理)
第5講必修模塊復習(三) (數列、不等式)
第6講必修模塊復習(四) (解析幾何、立體幾何、向量)
第7講簡易邏輯
第8講軌跡與橢圓
第9講雙曲線與拋物線
第10講直線與圓錐曲線
第11講圓錐曲線綜合
第12講空間向量與立體幾何
第13講立體幾何綜合
第14講知識點睛及期末考試
第15講試卷分析及期末點撥

  (二)具體說明

  高二數學秋季主要學習兩本書:必修3和選修2-1。選修2-1的講義基本上與各學校同步,所以不再詳說。必修3的前二章是算法和統計,內容以概念的介紹與了解為主,側重于對知識本身的理解,在高考的考查時也只要求掌握最基本的內容,一般多以選擇或填空的題型出現,比較簡單。考慮這兩章內容的性質與考查的難度,以及在暑期班已經預習的情況下,在秋季講義中我們不專門安排對這兩章的學習,學生只需掌握學校所學的基本內容即可。高考中這幾部分內容的難度與考查的主要形式大家可以看后面附的20xx年新課標省份的高考題。對于算法中比較難掌握的程序語言等內容,高考中都不作要求。

  必修3的第三章內容是概率初步,涉及到基本事件空間,需要計算基本事件的數目時,如果沒有計數原理的基礎知識,計算和理解會比較膚淺,而且高考中的概率題(可參考附錄中《概率》部分),大多都會與計數原理相結合,因此在學習概率前我們補充了計數原理的基礎知識。計數原理和概率的更深入的內容,將在選修2-3中學習。

  學完概率初步后,接下來是高一所學內容的簡單復習,力求做到溫故知新。同時本學期后半部分2-1的任務非常繁重,需要學習兩大塊重點內容:圓錐曲線、空間向量與立體幾何,這兩塊內容都是高考解答題的必考內容,占到解答題的1/3,并且解析幾何常常以壓軸題形式出現。這里對以前內容的復習也是利用前半學期比較輕松的時間,為后面2-1部分的內容作好充分的準備。

高二上數學教學計劃7

  一、指導思想:

  在學校教學工作意見指導下,在學部工作的框架下,認真落實學校對備課組工作的各項要求,嚴格執行學校的各項教育教學制度和要求,強化數學教學研究,提高全組老師的教學、教研水平,明確任務,團結協作,圓滿完成教學教研任務。具體目標如下。

  1。獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。

  2。提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。

  3。提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。

  4。發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。

  5。提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。

  6。具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

  二。學生基本情況

  高二理科學生共有500人,學生學習數學的氣氛不濃、基礎很差。由于學生對學過的知識內容不及時復習,致使對高二的數學學習有很大的影響,高一數學成績充分反映沒有尖子生,成績特差的學生也有不少,有一批思維相當靈活的學生,但學習不夠刻苦,學習成績一般,但有較大的潛力,以后好好的引導,進一步培養他們的學習興趣,從而帶動全班同學的學習熱情,提高學生的數學成績。

  三、教法分析:

  1。選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生“看個究竟”的沖動,以達到培養其興趣的目的。

  2。通過“觀察”,“思考”,“探究”等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。

  3。在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養成其邏輯思維的習慣。

  四、教學措施:

  1、認真落實,搞好集體備課。每2周至少進行一次集體備課。各組老師根據自已承擔的任務,提前一周進行單元式的備課,并出好本周的單頁練習。教研會時,由一名老師作主要發言人,對本周的教材內容作分析,然后大家研究討論其中的重點、難點、教學方法等。

  2、詳細計劃,保證練習質量。教學中用配備資料《學海導航》,要求學生按教學進度完成相應的習題,教師要提前向學生指出不做的題,以免影響學生的時間,每周以內容“滾動式”編兩份練習試卷,做后老師要收齊批改,存在的普遍性問題要安排時間講評。

  3、抓好第二課堂,穩定數學優生,培養數學能力興趣。競賽班的教學進度要加快,教學難度要有所降低,各班要培育好本班的優生,注意激發學生的學習興趣,隨時注意學生學習方法的指導。

  4、加強輔導工作。對已經出現數學學習困難的學生,教師的下班輔導十分重要。教師教學中,要盡快掌握班上學生的數學學習情況,有針對性地進行輔導工作,既要注意照顧好班上優生層,更不能忽視班上的困難學生。實行以競賽帶培優,讓有能力的同學更上一層樓。實行專人負責,定時間、定地點、定人數、定內容,的學校安排。我們高二段統一由戴文生老師負責,爭取在明年的市數學競賽中取得好的成績。

  5、段考制度創新。由于高二分科,我校實行分層教學,今年段考實行文理分別負責,重點班和次重點班、普通班的分別考試。對重點班要加深難度,拓展寬度,爭取在高二使學生的數學能力有較大的提升。其他班級要夯實基礎,實現會考新的突破,為高三學習打下基礎。

高二上數學教學計劃8

  一、教材分析。

  1、教材地位、作用。

  本節課的內容選自《普通高中課程標準實驗教科書數學必修3(A)版》第三章中的第3.2.1節古典概型。它安排在隨機事件的概率之后,幾何概型之前,學生還未學習排列組合的情況下教學的。

  古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位,是學習概率必不可少的內容,同時有利于理解概率的概念,有利于計算一些事件的概率,能解釋生活中的一些問題。因此本節課的教學重點是理解古典概型的概念及利用古典概型求解隨機事件的概率。

  2、學情分析。

  學生基礎一般,但師生之間,學生之間情感融洽,上課互動氛圍良好。他們具備一定的觀察,類比,分析,歸納能力,但對知識的理解和方法的掌握在一些細節上不完備,反映在解題中就是思維不慎密,過程不完整。

  二、教學目標。

  1、知識與技能目標。

  (1)理解等可能事件的概念及概率計算公式。

  (2)能夠準確計算等可能事件的概率。

  2、過程與方法。

  根據本節課的知識特點和學生的認知水平,教學中采用探究式和啟發式教學法,通過生活中常見的實際問題引入課題,層層設問,經過思考交流、概括歸納,得到等可能性事件的概念及其概率公式,使學生對問題的理解從感性認識上升到理性認識。

  3、情感態度與價值觀。

  概率問題與實際生活聯系緊密,學生通過概率知識的學習,可以更好的理解隨機現象的本質,掌握隨機現象的規律,科學地分析、解釋生活中的一些現象,初步形成實事求是的科學態度和鍥而不舍的求學精神。

  三、重點、難點。

  1、重點:理解古典概型的概念及利用古典概型求解隨機事件的概率。

  2、難點:如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數和試驗中基本事件的總數。

  四、教學過程。

  1、創設情境,提出問題。

  師:在考試中遇到不會做的選擇題同學們會怎么辦?在你不會做的前提下,蒙對單選題容易還是蒙對不定項選擇題容易?這是為什么?

  通過這個同學們經常會遇到的問題,引導學生合作探索新知識,符合“學生為主體,老師為主導”的現代教育觀點,也符合學生的認知規律。隨著新問題的提出,激發了學生的求知欲望,使課堂的有效思維增加。

  2、抽象思維。形成概念、

  師:考察試驗一“拋擲一枚質地均勻的骰子”,有幾種不同的結果,結果分別有哪些?

  生:在試驗中隨機事件有六個,即“1點”、“2點”、“3點”、“4點”、“5點”和“6點”。

  師:我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結果。

  師:考察試驗二“拋擲一枚質地均勻的硬幣”有哪些基本事件?

  生:在試驗中基本事件有兩個,即“正面朝上”和“反面朝上”。

  師:那基本事件有什么特點呢?

  問題:

  (1)在“拋擲一枚質地均勻的骰子”試驗中,會同時出現“1點”和“2點”這兩個基本事件嗎?

  (2)事件“出現偶數點”包含了哪幾個基本事件?

  由如上問題,分別得到基本事件如下的兩個特點:

  (1)任何兩個基本事件是互斥的;

  (2)任何事件(除不可能事件)都可以表示成基本事件的和。

  (讓學生交流討論,教師再加以總結、概括)

  讓學生歸納與總結,鼓勵學生用自己的語言表述,從而提高學生的表達能力與數學語言的組織能力

  例1:從字母中任意取出兩個不同字母的試驗中,有哪些基本事件?

  師:為了得到基本事件,我們可以按照某種順序,把所有可能的結果寫出來,本小題我們可以按照字母排序的順序,用列舉法列出所有基本事件的結果。

  解:所求的基本事件共有6個:

  ____________________________________________________________________________________。

  由于學生沒有學習排列組合知識,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏,解決了求古典概型中基本事件總數這一難點,同時滲透了數形結合及分類討論的數學思想。

  師:你能發現前面兩個數學試驗和例1有哪些共同特點嗎?(先讓學生交流討論,然后教師抽學生回答,并在學生回答的基礎上再進行補充)

  試驗一中所有可能出現的基本事件有“1點”、“2點”、“3點”、“4點”、“5點”和“6點”6個,并且每個基本事件出現的可能性相等,都是;

  試驗二中所有可能出現的基本事件有“正面朝上”和“反面朝上”2個,并且每個基本事件出現的可能性相等,都是;

  例1中所有可能出現的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6個,并且每個基本事件出現的可能性相等,都是;

  經概括總結后得到:

  ①試驗中所有可能出現的基本事件只有有限個;

  ②每個基本事件出現的可能性相等。

  我們將具有這兩個特點的概率模型稱為古典概率模型,簡稱古典概型。

  學生在合作交流的探究氛圍中思考、質疑、傾聽、表述,體驗到成功的喜悅,學會學習、學會合作,充分體現了數學的化歸思想。啟發誘導的同時,訓練了學生觀察和概括歸納問題的能力。

  3、概念深化,加深理解。

  試驗“向一個圓面內隨機地投射一個點,如果該點落在圓內任意一點都是等可能的”。你認為這是古典概型嗎?為什么?

  生:不是古典概型,因為試驗的所有可能結果是圓面內所有的點,試驗的所有可能結果數是無限的,雖然每一個試驗結果出現的“可能性相同”,但這個試驗不滿足古典概型的第一個條件。

  試驗“某同學隨機地向一靶心進行射擊,這一試驗的結果只有有限個:命中10環、命中9環……命中5環和不中環’。你認為這是古典概型嗎?為什么?

  生:不是古典概型,因為試驗的所有可能結果只有7個,而命中10環、命中9環……命中5環和不中環的出現不是等可能的,即不滿足古典概型的第二個條件。

  這兩個問題的設計是為了讓學生更加準確的把握古典概型的兩個特點,突破了如何判斷一個試驗是否是古典概型這一教學難點,培養學生思維的深刻性與批判性。

  4、觀察比較,推導公式。

  師:在古典概型下,隨機事件出現的概率如何計算?(讓學生討論、思考交流)

  生:試驗二中,出現各個點的概率相等,即

  P(“1點”)=P(“2點”)=P(“3點”)=P(“4點”)=P(“5點”)=P(“6點”)

  由概率的加法公式,得

  P(“1點”)+P(“2點”)+P(“3點”)+P(“4點”)+P(“5點”)+P(“6點”)=P(必然事件)=1

  因此P(“1點”)=P(“2點”)=P(“3點”)=P(“4點”)=P(“5點”)=P(“6點”)=

  進一步地,利用加法公式還可以計算這個試驗中任何一個事件的概率,例如,

  P(“出現偶數點”)=P(“2點”)+P(“4點”)+P(“6點”)=++==

  P(“出現偶數點”)=?=

  師:根據上述試驗,你能概括總結出,古典概型計算任何事件的概率計算公式嗎?

  生:_________________________________________________________________。

  學生通過運用觀察、比較方法得出古典概型的概率計算公式,體驗數學知識形成的發生與發展的過程,體現具體到抽象、從特殊到一般的數學思想,同時讓學生感受數學化歸思想的優越性和這一做法的合理性。

  師:我們在使用古典概型的概率公式時,應該還要注意些什么呢?(先讓學生自由說,教師再加以歸納)在使用古典概型的概率公式時,應該注意:

  ①要判斷該概率模型是不是古典概型;

  ②要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。

  深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。

  5、應用與提高。

  例2:單選題是標準化考試中常用的題型,一般是從A,B,C,D四個選項中選擇一個正確答案。如果考生掌握了考查的內容,他可以選擇惟一正確的答案。假設考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?

  解:這是一個古典概型,因為試驗的可能結果只有4個:選擇A、選擇B、選擇C、選擇D,從而由古典概型的概率計算公式得:

  探究:在標準化考試中既有單選題又有不定項選擇題,不定項選擇題是從A,B,C,D四個選項中選出所有正確的答案,同學們可能有一種感覺,如果不知道正確答案,多選題更難猜對,這是為什么?

  解:這是一個古典概型,因為試驗的可能結果只有15個:選擇A、選擇B、選擇C、選擇D,選擇AB、選擇AC、選擇AD、選擇BC、選擇BD、選擇CD、選擇ABC、選擇ABD、選擇ACD、選擇BCD、選擇ABCD,從而由古典概型的概率計算公式得:

  P(“答對”)=1/15

  解決了課前提出的思考題,讓學生明確解決概率的計算問題的關鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。

  例3:同時擲兩個骰子,計算:

  (1)一共有多少種不同的結果?

  (2)其中向上的點數之和是5的結果有多少種?

  (3)向上的點數之和是5的概率是多少?

  (教師先讓學生獨立完成,再抽兩位不同答案的學生回答)

  學生1:

  ①所有可能的結果是:

  (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21種。

  ②向上的點數之和為5的結果有2個,它們是(1,4)(2,3)。

  ③向上點數之和為5的結果(記為事件A)有2種,因此,由古典概型的概率計算公式可得

  學生2:

  ①擲一個骰子的結果有6種,我們把兩個骰子標上記號1,2以便區分,由于1號骰子的每一個結果都可與2號骰子的任意一個結果配對,組成同時擲兩個骰子的一個結果,我們可以用列表法得到(如圖),其中第一個數表示1號骰子的結果,第二個數表示2號骰子的結果。

  由表中可知同時擲兩個骰子的結果共有36種。

  ②在上面的所有結果中,向上的點數之和為5的結果有4種:(1,4),(2,3),(3,2),(4,1)。

  ③由于所有36種結果是等可能的,其中向上點數之和為5的結果(記為事件A)有4種,因此,由古典概型的概率計算公式可得

  師:上面同一個問題為什么會有兩種不同的答案呢?(先讓學生交流討論,教師再抽學生回答)

  生:答案1是錯的,原因是其中構造的21個基本事件不是等可能發生的,因此就不能用古典概型的概率公式求解。

  師:我們今后用古典概型的概率公式求解時,特別要驗證“每個基本事件出現是等可能的”這個條件,否則計算出的概率將是錯誤的。

  本題通過學生的觀察比較,發現兩種結果不同的根本原因是——研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現了學生的主體地位,逐漸使學生養成自主探究能力。同時培養學生運用數形結合的思想,提高發現問題、分析問題、解決問題的能力,增強學生數學思維情趣。

  6、知識梳理,課堂小結。

  (1)本節課你學習到了哪些知識?

  (2)本節課滲透了哪些數學思想方法?

  7、作業布置。

  (1)閱讀本節教材內容

  (2)必做題課本130頁練習第1,2題,課本134頁習題3。2A組第4題

  (3)選做題課本134頁習題B組第1題

  8、教學反思。

  本節課的教學設計以“問題串”的方式呈現為主,教學過程中師生共同合作,體驗古典概型的特點,公式的生成、發現,把“數學發現”的權力還給學生,讓學生感受知識形成的過程,獲得數學發現的體驗。將學習的主動權較完整地交還給學生。

  本節課始終本著在教師的引導下,學生通過討論、歸納、探究等方式自主獲取知識,從而達到滿意的教學效果。構建利于學生學習的有效教學情境,較好地拓展師生的活動空間,符合新課程的理念。

高二上數學教學計劃9

  一。學情分析

  高二5班共有學生73人, 8班共有學生70人。兩個班級都是高二理科班的三類班,大部分學生基礎不扎實,學習興趣不高,甚至很多學生存在怕數學科的心理。但他們還是存在一顆想學好數學的心,也想融入變化多端的數學世界,更想在每次考試中獨領風騷,鑒于此,對他們正確引導,教學中適當調整難度,起點放低點,步子邁小點,還是會有好成績的。

  二。教學計劃

  1。加強自身學習。

  ①加強課本的研讀。教科書是一切教學的出發點,同時也是考試的歸屬地,任何一個數學知識點都會從教科書中找到類型題或者相似題或者其影子。對教科書能否吃透,專研到位,直接決定著教學知識的全面性和系統性。也就決定著研讀教材的必要性。

  ②他山之石,可以攻玉。一個人由于生活的環境,面對的對象,自身知識局限等多方面原因,視野和出發點都有局限,思考問題和解決問題的廣度和深度都有局限,因此,多閱讀教學參考類的書,吸取他人的經驗,借鑒他人所長彌補自己所短,對于增強教學的針對性和精彩性大有裨益。

  ③強化課改意識。新課改已經全面鋪開,新課改的精神和思想都獨具時代性,前瞻性,科學性,因此,加強新課改知識的學習,領悟新課改思想,增強新課改意識,是時代的需要,是發展的需要。因此,積極參與新課改培訓,領會新課改精髓,并應用于實踐中是當前必須要做的,只有這樣,才能使自己的知識新陳代謝。

  ④認真參與組內備課。珍惜每周一次的集體備課,充分利用好這次集體備課機會,從同行們那里學習到自己缺乏或者不擅長的東西,并積極實施好組內的各項安排,落實好課時要求。

  ⑤增強聽課意識。按照學校的.要求,積極參加新課改年級的課堂聽課活動,聽取授課教師的點評,發現亮點,記錄亮點,積累亮點,點亮亮點。

  2。抓好課堂教學主戰場,激發師生學習數學熱情。

  ①加強新課情景創設,激發學生學習熱情。每一節新課的開展,都有其現實意義,有其價值所在,有其趣味性,充分挖掘好這方面知識,可起到一個良好的開端作用。

  ②精選精講例題。對于學生自己學得會的,不講,對于學生討論后可以解決的,給以適當點撥,對于學生在老師引導下完成的,要慢慢講,細細的講,爭取每個學生都聽得進,聽得懂,學得會。對于超越學生承受能力的,一概不講。

  ③精心布置課后作業。課后作業是課堂教學的反饋,作業質量的高低,一定層面可以反映教學效果的高低,因此,作業的布置需要科學化,分層化,多樣化,且知識點具有全面性。

  3。做好課后輔導工作。

  ①利用晚自習,充分給以每個學生耐心、細心、全面的輔導。讓學生積累的問題得到徹底解決。

  ②利用自習課時間,尋找需要幫助的學生進行輔導,公式背不出來的,抓背公式,不交作業的,責令補交作業。

  4。做好作業、考試反饋工作。

  學生認真完成作業和考卷,老師進行批改,總結共性問題,發現個性問題,有針對性的給以反饋,及時消除困惑。

  5。規范作答,養成良好習慣。

  現在學生的數學答卷,條理不清晰,邏輯混亂,因果顛倒,這是基礎不扎實的表現,更是一種思維的缺陷。因此,現階段抓好規范答題,有助于學生良好數學思維的養成,避免將來高考失分和日后生活的凌亂。

  6。培養學生的數學興趣,普及數學價值規律的應用。

  興趣是最好的老師。數學難,數學煩,難在何處,煩在何方?找到原因,對癥下藥,通過課堂,移植中外數學趣味知識,讓學生體會到數學的價值所在,通過多媒體,降低數學思維難度等等都是提高學生興趣的好方法。

  以上是這個學期的教學工作計劃,在實施過程中,將及時作出調整,以期達到教與學的最佳效果。

高二上數學教學計劃10

  二、教學工作

  1、深入鉆研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細致領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。同時對輔助資料加大研究,擴大自己的知識面以及同類學科之間的聯系。

  2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學應用;重視數學思想方法的滲透。針對我們這的學生數學認知能力和基礎不是很好,上課要精選試題,做好教案和學案。要使每位學生掌握基礎知識為教學落腳點。

  3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利于學生學習的氛圍。教好學前提要了解學生,關心愛護每位學生,要為學生提供寬松愉悅的課堂教學環境。

  4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和復習是培養學生自學的好材料。

  5、加強課堂教學研究,科學設計教學方法。根據教材的內容和特征,實行啟發式和討論式教學。發揚教學民主,師生雙方密切合作,交流互動,讓學生感受、理解知識的產生和發展的過程。要和同仁根據教材各章節的重難點制定教學進度,認真對待集體備課和聽課。積極聽有經驗的老師的教研活動,積累教學經驗。

  三,教學計劃

  要提前一周制定好下周教學學案和教案。要精選試題,力求少而精,有針對性。要備好課,選好教學方法。

  總之,教學是慢功夫,我會試圖把它做好。

高二上數學教學計劃11

  一、教材分析

  1、教材地位、作用

  本節課的內容選自《普通高中課程標準實驗教科書數學必修3(A)版》第三章中的第3。2。1節古典概型。它安排在隨機事件的概率之后,幾何概型之前,學生還未學習排列組合的情況下教學的。古典概型是一種特殊的數學模型,也是一種最基本的概率模型,在概率論中占有相當重要的地位,是學習概率必不可少的內容,同時有利于理解概率的概念,有利于計算一些事件的概率,能解釋生活中的一些問題。因此本節課的教學重點是理解古典概型的概念及利用古典概型求解隨機事件的概率。

  2、學情分析

  學生基礎一般,但師生之間,學生之間情感融洽,上課互動氛圍良好。他們具備一定的觀察,類比,分析,歸納能力,但對知識的理解和方法的掌握在一些細節上不完備,反映在解題中就是思維不慎密,過程不完整。

  二、教學目標

  1、知識與技能目標

  ⑴、理解等可能事件的概念及概率計算公式;⑵、能夠準確計算等可能事件的概率。

  2、過程與方法

  根據本節課的知識特點和學生的認知水平,教學中采用探究式和啟發式教學法,通過生活中常見的實際問題引入課題,層層設問,經過思考交流、概括歸納,得到等可能性事件的概念及其概率公式,使學生對問題的理解從感性認識上升到理性認識。

  3、情感態度與價值觀

  概率問題與實際生活聯系緊密,學生通過概率知識的學習,可以更好的理解隨機現象的本質,掌握隨機現象的規律,科學地分析、解釋生活中的一些現象,初步形成實事求是的科學態度和鍥而不舍的求學精神。

  三、重點、難點

  重點:理解古典概型的概念及利用古典概型求解隨機事件的概率。

  難點:如何判斷一個試驗是否是古典概型,分清在一個古典概型中某隨機事件包含的基本事件的個數和試驗中基本事件的總數。

  四、教學過程

  1、創設情境提出問題

  師:在考試中遇到不會做的選擇題同學們會怎么辦?在你不會做的前提下,蒙對單選題容易還是蒙對不定項選擇題容易?這是為什么?

  【設計意圖】通過這個同學們經常會遇到的問題,引導學生合作探索新知識,符合“學生為主體,老師為主導”的現代教育觀點,也符合學生的認知規律。隨著新問題的提出,激發了學生的求知欲望,使課堂的有效思維增加。

  2、抽象思維形成概念

  師:考察試驗一“拋擲一枚質地均勻的骰子”,有幾種不同的結果,結果分別有哪些?

  生:在試驗中隨機事件有六個,即“1點”、“2點”、“3點”、“4點”、“5點”和“6點”。

  師:我們把上述試驗中的隨機事件稱為基本事件,它是試驗的每一個可能結果。

  師:考察試驗二“拋擲一枚質地均勻的硬幣”有哪些基本事件?

  生:在試驗中基本事件有兩個,即“正面朝上”和“反面朝上”。

  師:那基本事件有什么特點呢?

  問題:(1)在“拋擲一枚質地均勻的骰子”試驗中,會同時出現“1點”和“2點”這兩個基本事件嗎?

  (2)事件“出現偶數點”包含了哪幾個基本事件?

  由如上問題,分別得到基本事件如下的兩個特點:

  (1)任何兩個基本事件是互斥的;

  (2)任何事件(除不可能事件)都可以表示成基本事件的和。(讓學生交流討論,教師再加以總結、概括)

  【設計意圖】讓學生歸納與總結,鼓勵學生用自己的語言表述,從而提高學生的表達能力與數學語言的組織能力

  例1從字母中任意取出兩個不同字母的試驗中,有哪些基本事件?

  師:為了得到基本事件,我們可以按照某種順序,把所有可能的結果寫出來,本小題我們可以按照字母排序的順序,用列舉法列出所有基本事件的結果。

  解:所求的基本事件共有6個:

  【設計意圖】由于學生沒有學習排列組合知識,因此用列舉法列舉基本事件的個數,不僅能讓學生直觀的感受到對象的總數,而且還能使學生在列舉的時候作到不重不漏,解決了求古典概型中基本事件總數這一難點,同時滲透了數形結合及分類討論的數學思想。

  師:你能發現前面兩個數學試驗和例1有哪些共同特點嗎?(先讓學生交流討論,然后教師抽學生回答,并在學生回答的基礎上再進行補充)

  試驗一中所有可能出現的基本事件有“1點”、“2點”、“3點”、“4點”、“5點”和“6點”6個,并且每個基本事件出現的可能性相等,都是;

  試驗二中所有可能出現的基本事件有“正面朝上”和“反面朝上”2個,并且每個基本事件出現的可能性相等,都是;

  例1中所有可能出現的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6個,并且每個基本事件出現的可能性相等,都是;

  經概括總結后得到:

  ①試驗中所有可能出現的基本事件只有有限個;②每個基本事件出現的可能性相等。

  我們將具有這兩個特點的概率模型稱為古典概率模型,簡稱古典概型。

  【設計意圖】學生在合作交流的探究氛圍中思考、質疑、傾聽、表述,體驗到成功的喜悅,學會學習、學會合作,充分體現了數學的化歸思想。啟發誘導的同時,訓練了學生觀察和概括歸納問題的能力。

  3、概念深化,加深理解

  試驗“向一個圓面內隨機地投射一個點,如果該點落在圓內任意一點都是等可能的”。你認為這是古典概型嗎?為什么?

  生:不是古典概型,因為試驗的所有可能結果是圓面內所有的點,試驗的所有可能結果數是無限的,雖然每一個試驗結果出現的“可能性相同”,但這個試驗不滿足古典概型的第一個條件。

  試驗“某同學隨機地向一靶心進行射擊,這一試驗的結果只有有限個:命中10環、命中9環……命中5環和不中環’。你認為這是古典概型嗎?為什么?

  生:不是古典概型,因為試驗的所有可能結果只有7個,而命中10環、命中9環……命中5環和不中環的出現不是等可能的,即不滿足古典概型的第二個條件。

  【設計意圖】這兩個問題的設計是為了讓學生更加準確的把握古典概型的兩個特點,突破了如何判斷一個試驗是否是古典概型這一教學難點,培養學生思維的深刻性與批判性。

  4、觀察比較推導公式

  【設計意圖】學生通過運用觀察、比較方法得出古典概型的概率計算公式,體驗數學知識形成的發生與發展的過程,體現具體到抽象、從特殊到一般的數學思想,同時讓學生感受數學化歸思想的優越性和這一做法的合理性。

  師:我們在使用古典概型的概率公式時,應該還要注意些什么呢?(先讓學生自由說,教師再加以歸納)在使用古典概型的概率公式時,應該注意:

  ①要判斷該概率模型是不是古典概型;

  ②要找出隨機事件A包含的基本事件的個數和試驗中基本事件的總數。

  【設計意圖】深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關鍵。

  5、應用與提高

  【設計意圖】本題通過學生的觀察比較,發現兩種結果不同的根本原因是——研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學重點,體現了學生的主體地位,逐漸使學生養成自主探究能力。同時培養學生運用數形結合的思想,提高發現問題、分析問題、解決問題的能力,增強學生數學思維情趣。

  6、知識梳理課堂小結

  1、本節課你學習到了哪些知識?

  2、本節課滲透了哪些數學思想方法?

  7、作業布置

  1、閱讀本節教材內容

  2、必做題課本130頁練習第1,2題,課本134頁習題3。2A組第4題

  3、選做題課本134頁習題B組第1題

  8、教學反思

  本節課的教學設計以“問題串”的方式呈現為主,教學過程中師生共同合作,體驗古典概型的特點,公式的生成、發現,把“數學發現”的權力還給學生,讓學生感受知識形成的過程,獲得數學發現的體驗。將學習的主動權較完整地交還給學生。本節課始終本著在教師的引導下,學生通過討論、歸納、探究等方式自主獲取知識,從而達到滿意的教學效果。構建利于學生學習的有效教學情境,較好地拓展師生的活動空間,符合新課程的理念。

高二上數學教學計劃12

  一、指導思想

  在素質教育、新課程、高考變化和招生變化的大背景下,為把我校建設成為“國內一流、國際知名”的名校,以及著眼于學校、教師、學生的共同發展,提高學業水平測試成績和生物選修班學生的達B率,制訂本計劃。

  二、工作目標

  1、繼續加強新課程理論的學習,統一思想認識,形成主動積極、創新工作的局面,提高教師工作的質態。

  2、增強計劃性和規范性。制訂出具體教學計劃和奧賽輔導計劃,認真落實學校修訂的各項教學規程,規范施教。

  3、重視對新課程的研討,努力提升教師處理新課程的能力,尤其是生物實驗的開設能力和研究性學習的指導能力。

  4、加強對教學常規的檢查,提高課堂教學效率,確保高二學業水平測試的高通過率。

  5、切實加強本年級奧賽輔導,迎接四月份的江蘇省初賽和五月份的復賽。

  6、安排生物研究性學習的專題研究活動。

  7、關注青年教師的培養,引導他們走科研興教之路,努力提升全組生物教師教科研水平。

  三、措施與方法

  1、開學初制訂教學工作計劃及競賽輔導計劃。

  2、備課組教學案和自編練習必須提前一周完稿,并提交電子文稿,以便于集體備課時討論、修改。

  3、加強相互學習與研討,針對新課程實施中的困惑之處,每周安排備課組內公開課1節。

  4、根據年級組安排定期檢查教師教學案和作業批改,安排好必修班的中午練習和周練,對上學期不及格的同學進行排查,安排個別輔導,補缺補差。

  5、本學期的競賽輔導主要側重綜合訓練。

  6、備課組加強對研究性學習指導的研究,指導學生開展研究性學習。

  7、青年教師要堅持聽先行課,每學期要堅持撰寫教育教學論文一篇以上。

高二上數學教學計劃13

  一、教學目標

  (一)知識與技能

  1.通過探究學習使學生掌握幾何概型的基本特征,明確幾何概型與古典概型的區別.

  2.理解并掌握幾何概型的概念.

  3.掌握幾何概型的概率公式,會進行簡單的幾何概率計算.

  (二)過程與方法

  1.讓學生通過對隨機試驗的觀察分析,提煉它們共同的本質的東西,從而親歷幾何概型的建構過程,培養學生觀察、類比、聯想等邏輯推理能力.

  2.通過實際應用,培養學生把實際問題抽象成數學問題的能力,感知用圖形解決概率問題的方法.

  (三)情感、態度、價值觀

  1.讓學生了解幾何概型的意義,加強與現實生活的聯系,以科學的態度評價一些隨機現象.

  2.通過對幾何概型的教學,幫助學生樹立科學的世界觀和辯證的思想,養成合作交流的習慣,初步形成建立數學模型的能力.

  二、教學重點與難點

  教學重點:了解幾何概型的基本特點及進行簡單的幾何概率計算.

  教學難點:如何在實際背景中找出幾何區域及如何確定該區域的“測度”.

  三、教學方法與教學手段

  教學方法:“自主、合作、探究”教學法

  教學手段: 電子白板、實物投影、多媒體課件輔助

  四、教學過程

  五、板書:幾何概型的概念:設D是一個可度量的區域(例如線段、平面圖形、立體圖形等).每個基本事件可以視為從區域D內隨機地取一點,區域D內的每一點被取到的機會都一樣;隨機事件A的發生可以視為恰好取到區域D內的某個指定區域d中的點。

  這時,事件A發生的概率與d的測度(長度、面積、體積等)成正比。

  我們把滿足這樣條件的概率模型稱幾何概型.

  板書:幾何概型的概率計算公式:

高二上數學教學計劃14

  一、指導思想

  努力把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,立足掌握基本技能和基本能力,著力培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。堅持一切為了學生,為了學生一切,人人都能成功的教學理念。

高二上數學教學計劃15

  數學分析

  1。解析幾何是利用代數方法來研究幾何圖形性質的一門學科,它包括平面解析幾何和空間解析幾何兩部分。它的主要研究對象是直線和平面、二次曲線和二次曲面。在大學階段,“解析幾何”是以圓錐曲線和圓錐曲面為研究對象的一門學科,研究三元二次方程表示的曲線和曲面,如空間直線、平面、柱面、錐面、旋轉曲面和二次曲面的方程等,研究的內容比較固定,研究方法比較成熟。高中階段主要研究二元二次方程所表示的曲線,比如圓、橢圓、雙曲線、拋物線等。

  2。“解析幾何思想”代表了研究曲線和曲面的一般方法和手段,即用代數為工具解決幾何問題。用解析幾何的思想方法來研究幾何問題,思維工程可以表現為以下步驟:第一,用代數的語言來描述幾何圖形,例如“點”可以用“數對”表示,“曲線”可以用“方程”表示等;第二,把幾何問題轉化為代數問題,例如,“兩直線平行”可以轉化為“兩直線方程組成的方程組無解”等;第三,實施代數運算,求解代數問題;第四,將代數解轉化為幾何結論。隨著數學本身的發展,出現了代數數論、代數幾何等的數學分支,而拓撲學、泛函等代數工具都可以作為研究心得曲線和曲面的工具,這些都是“解析幾何思想”的發展個推廣。解析幾何初步的重點是幫助學生理解解析幾何的基本思想,即把代數作為一種工具和手段來研究幾何問題。

  3。“坐標系”是解析幾何思想的主要組成部分,因為建立了坐標系,就能把曲線和曲面的性質用代數來表示,從而把幾何問題轉化為代數問題來解決。適當地選擇坐標系可以大大簡化對圖形性質的研究,但圖形的性質不會豎著坐標系的變化而改變。我們要研究的正是那些和坐標系的選擇無關的性質;或者說建立坐標系正是為了擺脫圖形對坐標系的依賴,這在對數上就表現為某個線性變換群下的不變量和不變關系。

  4。圓錐曲線是我們生活中最基本的圖形。①圓錐曲線(面)可以幫助我們刻畫一些基本的運動。例如,太陽系中,八大行星的運動軌跡都是橢圓。②光學性質和圓錐曲線是密不可分的,基本的光學性質都是由圓錐曲線體現出來的。例如,探照燈就是利用拋物面的光學性質制作而成的,它可以將點光源發出的光折射成平行光,照射到足夠遠的地方。幾乎所有的光學儀器都是依照圓錐曲線(面)的性質制成的。③研究圓錐曲線(面)的性質時體現解析幾何本質的最好載體,即便是在大學數學系的學習中,如何利用方程的系數確定二次曲線的形狀,揭示其規律也是數學的經典內容。

  教育分析

  1。有助于學生數形結合思想的培養。

  解析幾何的本質是用代數的方法研究圖形的幾何性質,它溝通了代數與幾何之間的聯系,體現了數形結合的重要思想。在解析幾何初步的學習中,經歷將幾何問題代數化、處理代數問題、分析代數結果的幾何含義、解決幾何問題的過程,有助于學生認識數學內容之間的內在聯系,體會數形結合的思想,形成正確的數學觀。

  2。是培養學生運算能力的重要載體。

  運算思想是數學中最重要的思想之一。解析幾何的運算,往往有較強的綜合性,設計相應的代數方程知識(包括消元思想、整體思想、函數思想、同解原理、韋達定理、方程的解、構造不等式、參變量代換、求解不等式)等內容,對學生計算能力要求較高。在解決解析幾何問題時,要注重“數”與“形”的統一,在計算時,要結合圖形自身的特點,充分挖掘圖形的幾何結論,這往往是解決問題的突破口和簡化解題過程的有效方法。比如,涉及圓的問題時,注重運用圓的相關幾何性質,對于直線與圓的位置關系要強化幾何處理,淡化代數處理方法,解析幾何獨有的特點,最培養學生的運算能力起到了獨特的作用。

  課標解讀

  1。整體定位

  “解析幾何初步”研究的問題是直線和圓,及其之間的關系,還有空間直角坐標系的概念。高中階段解析幾何內容的分布,除了“解析幾何初步”外,在選修系列1,2中,都延續了解析幾何的內容,設計了“圓錐曲線與方程”。在選修系列4的《幾何證明選講》中,還將繼續研究圓錐曲線。研究圓錐曲線有兩種方法:綜合幾何的方法和解析幾何的方法。在選修系列4的《幾何證明選講》中,運用了綜合幾何的方法。

  “解析幾何初步”是要依托直線的方程與圓的標準方程,讓學生把握用代數方法解決幾何問題的基本步驟,初步形成代數方法解決幾何問題的能力,幫助學生理解解析幾何的基本思想。

  2。具體要求

  (1)直線與方程

  ①在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素;

  ②理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式;

  ③能根據斜率判定兩條直線平行或垂直;

  ④根據確定直線位置關系的幾何要素,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數的關系;

  ⑤能用解方程組的方法求兩直線的交點坐標;

  ⑥探索并掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。

  (2)圓與方程

  ①回顧確定圓的幾何要素,在平面直角坐標系中,探索并掌握圓的標準方程與一般方程;

  ②能根據給定直線、圓的方程,判斷直線與圓、圓與圓的位置關系;

  ③能用直線和圓的方程解決一些簡單的問題。

  (3)在平面“解析幾何初步”的學習過程中,體會用代數方法處理幾何問題的思想。

  (4)空間直角坐標系

  ①通過具體情境,感受建立空間直角坐標系的必要性,了解空間直角坐標系,會空間直角坐標系刻畫點的位置;

  ②通過表示特殊長方體(所有棱分別與坐標軸平行)頂點的坐標,探索并得出空間兩點間的距離公式。

  《標準》中對“解析幾何初步”的要求只是階段性要求,在選修系列1,2中,還將進一步學習圓錐曲線與方程的內容。因此,對本部分內容的教學要把握好“度”,特別是對于解析幾何思想的理解不能要求一步到位。

  3。課標解讀

  (1)要注重知識的發生與發展的過程

  解析幾何初步的教學,要注重知識的發生與發展的過程,首先將幾何問題代數化,用代數的語言描述幾何元素及其關系,進而將幾何問題代數化;處理代數問題;分析代數結果的幾何含義,最終解決幾何問題。同時,應強調借助幾何直觀理解代數關系的意義,即對代數關系的幾何意義的解釋。讓學生在這樣的過程中,不斷地體會“數形結合”的思想方法。

  數學課程應返璞歸真,努力揭示數學概念、法則、結論的發展過程和本質,要通過學生的自主探索活動,使學生理解數學概念、結論逐步形成的過程,體會蘊涵在其中的思想方法。在解析幾何初步的教學中,同樣要通過觀察、操作探索,確定直線與圓的幾何要素,并由此探索掌握直線與圓的幾種形式的方程,探索掌握一些距離公式。

  比如如何在平面直角坐標系中描述直線,這是解析幾何教學中遇到的第一個問題。在坐標系中,一條直線或者與x軸平行,或者與x軸相交。與x軸平行的直線的代數特征很簡單,這條直線上的點的縱坐標是個常數,即y=a。除了x=a,還有什么方法可以刻畫與x軸相交的直線?也就是如何用代數的方法刻畫直線的斜率。

  (2)在高中階段,直線的斜率一般一般有三種表示方式

  ①用傾斜角的正切

  這是傳統教材的方式,由于傾斜角是大于等于0°小于180°,傾斜角與其正切一一對應的(90°除外);當然,也可以用傾斜角的余弦值表示直線的斜率,傾斜角與其余弦值是一一對應的,但這種表示要復雜一些,一般都選擇使用傾斜角的正切。

  這需要先引入0°到180°的正切函數的概念。

  ②用向量

  內容結構

  1。知識內容

  2。 章節安排

  本章教學時間約需18課時,具體分配如下:

  1 直線與直線的方程 8課時

  2 圓與圓的方程 5課時

  3 空間直角坐標系 3課時

【高二上數學教學計劃】相關文章:

高二上數學教學計劃12-24

數學高二上冊教學計劃12-09

高二上數學教學計劃01-10

高二上期數學教學計劃12-24

高二上數學教學計劃整理10-17

高二上學期教學計劃數學10-18

高二上學期文科數學教學計劃04-01

高二上學期數學教學計劃07-15

高二上學期數學教學計劃12-24

高二上學期數學教學計劃11-16