高一數學教學計劃【推薦】
時間流逝得如此之快,又將迎來新的工作,新的挑戰,是時候靜下心來好好寫寫計劃了。相信許多人會覺得計劃很難寫?下面是小編為大家收集的高一數學教學計劃,歡迎閱讀與收藏。
高一數學教學計劃1
一、教學思想:
使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下。
1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3、提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4、發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5、提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。6、具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書?數學(A版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承,借簽,發展,創新之間的關系,體現基礎性,時代性,典型性和可接受性等到,具有如下特點:
1、“親和力”:以生動活潑的呈現方式,激發興趣和美感,引發學習激情。
2、“問題性”:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。
3、“科學性”與“思想性”:通過不同數學內容的聯系與啟發,強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神。
4、“時代性”與“應用性”:以具有時代性和現實感的素材創設情境,加強數學活動,發展應用意識。
三、教法分析:
1、選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生“看個究竟”的沖動,以達到培養其興趣的目的。
2、通過“觀察”,“思考”,“探究”等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。
3、在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養成其邏輯思維的習慣。
四、學情分析:
兩個班一個普高一個職高,學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養其自覺性。班級存在的問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
五、教學措施:
1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發,從感性提高到理性。注意運用對比的方法,反復比較相近的概念。注意結合直觀圖形,說明抽象的知識。注意從已有的知識出發,啟發學生思考。
3、加強培養學生的邏輯思維能力就解決實際問題的能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯系。加強復習檢查工作。抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環節,針對不同的教材內容選擇不同教法。
6、重視數學應用意識及應用能力的培養。
俗話說的好,好的教學計劃是教學成功的一半,作為一名優異的教師,做好一定的教學計劃很有必要。
高一數學教學計劃2
一、教材分析(結構系統、單元內容、重難點)
必修5第一章:解三角形。重點是正弦定理與余弦定理。難點是正弦定理與余弦定理的應用。第二章:數列。重點是等差數列與等比數列的前n項的和。難點是等差數列與等比數列前n項的和與應用。第三章:不等式。重點是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規劃問題、基本不等式。難點是二元一次不等式(組)與簡單的線性規劃問題及應用。
必修2第一章:空間幾何體。重點是空間幾何體的三視圖和直觀圖及表面積與體積。難點是空間幾何體的三視圖。第二章:點、直線、平面之間的位置關系。重點與難點都是直線與平面平行及垂直的判定及其性質。第三章:直線與方程。重點是直線的傾斜角與斜率及直線方程。難點是如何選擇恰當的直線方程求解題目。第四章:圓與方程。重點是圓的方程及直線與圓的位置關系。難點是直線與圓的位置關系。
二、學生分析(雙基智能水平、學習態度、方法、紀律)
較去年而言,今年的學生的素質有了比較大的提高,學生的基礎知識水平與基本學習方法比較扎實,大部分的學生對學習都有很大的興趣,學習紀律比較自覺。
三、教學目的要求
1、通過對任意三角形邊長和角度關系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計算有關的實際問題。
2、通過日常生活中的實例,了解數列的概念和幾種簡單的表示方法,了解數列是一種特殊的函數。理解等差數列、等比數列的概念,探索并掌握2種數列的通項公式與前n項和的公式,能用有關的知識解決相應的問題。
3、理解不等式(組)對于刻畫不等關系的意義和價值。掌握求解一元二次不等式的基本方法,并能解決一些實際問題。能用一元二次不等式組表示平面區域,并嘗試解決簡單的二元線性規劃問題。
4、幾何學研究現實世界中物體的形狀、大小與位置的學科。直觀感知、操作確認、思辨論證、度量計算是認識和探索幾何圖形及其性質的方法。先從對空間幾何體的整體觀察入手,認識空間圖形及其直觀圖的畫法。再以長方體為載體,直觀認識和理解空間中點、直線、平面之間的位置關系,并利用數學語言表述有關平行、垂直的性質與判定,對某些結論進行論證。另外了解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角坐標系中建立直線和圓的代數方程,運用代數方法研究它們的幾何性質及其相互關系,了解空間直角坐標系。體會數形結合的思想,初步形成用代數方法解決幾何問題的能力。
四、完成教學任務和提高教學質量的具體措施
積極做好集體備課工作,達到內容統一、進度統一、目標統一、例題統一、習題統一、資料統一。上好每一節課,及時對學生的思想進行觀察與指導。課后進行有效的輔導。進行有效的課堂反思。
高一數學教學計劃3
不論從事何種工作,如果要想做出高效、實效,務必先從自身的工作計劃開始。有了計劃,才不致于使自己思想迷茫。下文為您準備了高一數學第一章函數及其表示教學計劃。
一、教材內容分析
函數是高中數學的重要內容,函數的表示法是“函數及其表示”這一節的主要內容之一。學習函數的表示法,不僅是研究函數本身和應用函數解決實際問題所必須涉及的問題,也是加深對函數概念理解所必須的。同時,基于高中階段所接觸的許多函數均可用幾種不同的方式表示,因而學習函數的表示也是領悟數學思想方法(如數形結合、化歸等)學會根據問題需要選擇表示方法的重要過程。
學生在學習用集合與對應的語言刻畫函數之前,比較習慣于用解析式表示函數,但這是對函數很不全面的認識。在本節中,從引進函數概念開始,就比較注重函數的不同表示方法:解析法、圖象法、列表法。函數的不同表示法能豐富對函數的認識,幫助理解抽象的函數概念。特別是在信息技術環境下,可以使函數在數形結合上得到更充分的表現,使學生更好地體會這一重要的數學思想方法。因此,在研究函數時,應充分發揮圖象直觀的作用;在研究圖象時要注意代數刻畫,以求思考和表述的精確性。
二、教學目標分析
根據《普通高中數學課程標準》(實驗)和新課改的理念,我從知識、能力和情感三個方面制訂教學目標。
1、明確函數的三種表示方法(圖象法、列表法、解析法),通過具體的實例,了解簡單的分段函數及其應用。
2、通過解決實際問題的過程,在實際情境中能根據不同的需要選擇恰當的方法表示函數,發展學生思維能力。
3、通過一些實際生活應用,讓學生感受到學習函數表示的必要性;通過函數的解析式與圖象的結合滲透數形結合思想。
三、教學問題診斷分析
(1)初中已經接觸過函數的三種表示法:解析法、列表法和圖象法、高中階段重點是讓學生在了解三種表示法各自優點的基礎上,使學生會根據實際情境的需要選擇恰當的表示方法。因此,教學中應該多給出一些具體問題,讓學生在比較、選擇函數模型表示方式的過程中,加深對函數概念的整體理解,而不再誤以為函數都是可以寫出解析式的。
(2)分段函數大量存在,但比較繁瑣。一方面,要加強用分段函數模型刻畫實際問題的實踐,另一方面,還可以通過動畫模擬,讓學生體驗到,分段函數的問題應該分段解決,然后再綜合。這也為下一步研究分段函數的單調性等性質打下伏筆。
四、本節課的教法特點以及預期效果分析
(一)本節課的教法特點
根據教學內容,結合學生的具體情況,我采用了學生自主探究和教師啟發引導相結合的教學方式。在整個的教學過程中讓學生盡可能地動手、動腦,調動學生積極性,充分地參與學習的全過程。倡導學生主動參與、樂于探究、勤于動手,逐步培養學生能夠利用函數來處理信息的能力。
(二)本節課預期效果
1、通過具體的實例,讓學生體會函數三種表示法的優、缺點。
創造問題情景這種情景的創設以具體事例出發,印象深刻。所以在引入時先從函數的三要素入手,強調要素之一對應關系,然后給出三個具體實例:
(1)炮彈發射時,距離地面的高度隨時間變化的情況;
(2)用圖表的形式給出臭氧層空洞的面積與時間的關系;
(3)恩格爾系數的變化情況。
指出每種對應分別以怎樣的形式展現。引出函數的表示方法這一課題。因為我們這節課的重點是讓學生在實際情景中,會根據不同的需要選擇恰當的表示方法。會選擇的前提是理解,這些完全靠學生的現實經驗,讓學生自己去發現各自的優劣。這為第一道例題打下基礎。
例1通過具體例子,讓學生用三種不同的表示方法來表示的同一個函數,進一步理解函數概念。把問題交給學生,學生獨立完成,并自己檢查發現問題,加深學生對三種表示法的深刻理解。學生思考函數表示法的規定。注意本例的設問,此處“”有三種含義,它可以是解析表達式,可以是圖象,也可以是對應值表。
由于這個函數的圖象由一些離散的點組成,與以前學習過的一次函數、二次函數的圖象是連續的曲線不同。通過本例,進一步讓學生感受到,函數概念中的對應關系、定義域、值域是一個整體、函數y=5x不同于函數y=5x(x∈{1,2,3,4,5}),前者的圖象是(連續的)直線,而后者是5個離散的點。由此認識到:“函數圖象既可以是連續的曲線,也可以是直線、折線、離散的點,等等。”并明確:如何判斷一個圖形是否是函數圖象方法?
2、讓學生會根據不同的實例選擇恰當的方法表示函數
例2用表格法表示了函數。要“對這三位運動員的成績做一個分析”不太方便,因此需要改變函數表示的方法,選擇圖象法比較恰當。教學中,先不必直接把圖象法告訴學生,可以讓學生說說自己是如何分析的,選擇了什么樣的方法來表示這三個函數、通過比較各種不同的表示方法,達成共識:用圖象法比較好。培養學生根據實際需要選擇恰當的函數表示法的能力。
學生經過觀察、思考獲得結論、比如總體水平(朱啟南成績好)變化趨勢(劉天佑的成績在逐步提高)與運動員的平均分的比較,等等。培養學生的觀察能力、獲取有用信息的能力。同時要求學生注意圖中的虛線不是函數圖象的組成部分,之所以用虛線連接散點,主要是為了區分這三個函數,直觀感受三個函數的圖象具有整體性,也便于分析成績情況,加以比較。
3、通過具體的實例,了解分段函數及其表示
生活中有很多可以用分段函數描述的實際問題,如出租車的計費、個人所得稅納稅稅額等等。通過例3的教學,讓學生了解分段函數及其表示。為了便于學生理解,給出了實際情況的模擬。可以使函數在數與形兩方面的結合得到更充分的表現,使學生通過函數的學習更好地體會數形結合的數學思想方法。
高一數學教學計劃4
一.基本情況分析:
1.學生情況分析:4個重點班的學生,基礎比較好,學習積極性高.普通班學生在基礎、學習習慣、學習自覺性等方面都有一定差距,因此在教學中需時時提醒學生,培養其自覺性。學生存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于強化基礎知識,培養學生的計算能力,提高思維能力,爭取每堂課教學一個知識點,掌握一個知識點。
2.教材分析:本學期時間短,教學任務是必修4第二章,必修5,必修2涉及平面向量,解三角形,數列,空間幾何體,點,線面的位置關系,直線與方程,圓與方程。
二.工作要點及措施
1、教案學案一體化繼續探索適合我校學生實際的課堂教學模式,為發揮學生的主體作用,切實提高課堂效率,本學期推行三圖四化的使用,基本操作辦法是,提前一天把學案發給學生,讓學生課前預習,即先自主學習,在課堂上,讓學生充分活動,在教師的問題引導下,積極思考,同學之間認真討論,確定問題的解決的方法途徑和結論,教師在課堂上做好問題的引導和問題的變式,想方設法的激勵學生思考問題,在學生回答問題后對學生進行肯定和鼓勵。
三圖四化工廠的設計
組內成員先自行設計出學案初稿,然后經備課組全體成員集體教研、討論,確定學案的定稿。由于課型不同,學案的環節也相應存在著不同,但每個學案都應包括學習目標、學習重點、導學問題、學法指導、達標訓練等環節,在設計中要把握問題的難度,在操作中低重心運行,為保證高考升學取得大面積豐收,教學要面向全體學生,教學要求要低一些,讓后進生能接受,調動他們的學習積極性,促進后進生的轉變,由此來督促中上等學生的學習。
(1)學習目標的制定。學習目標要明確,學生能一目了然,切忌學習目標過多,讓學生在課堂的開始就引起消極情緒。
(2)導學問題的設計。導學問題的設計不是把課本所學知識變成問題然后簡單邏列,而是根據教材的特點,學生的實際水平能力,聯系社會現實問題,設計成不同層次的問題。問題的設計和問題的形式靈活多樣,可以是問題式、簡答式等等,根據學習內容的不同采用不同的形式。
(3)學法指導。
學法指導也就是學習方法、活動方式的指導及疑難問題的提示等。學生對每節課知識掌握的如何,學習方法的指導起到了關鍵作用。本環節的目的是讓學生在平時的學習過程中隨時掌握解決問題的方法,逐步由學會變為會學。
(4)達標訓練的設計。為了使學到的知識及時得到鞏固、消化和吸收,進而轉化為能力,要精心設計有階梯性、層次性的達標訓練,要注意此環節應面向全體學生,發展各類學生的潛能,讓每個學生在每節課后都有收獲,都有成就感。
2、集體備課我們要克服以往集體備課中存在的問題,真正提高說課質量,使集體備課對每位教師尤其是新教師起到有效的指導和幫助作用,將集體備課落到實處。具體做法如下:
(1)提前確定教學進度、中心發言人(詳情見附表)及說課時間(每周五下午6、7節)。
(2)中心發言人針對本年級學生實際情況,精心設計課堂結構,精選例題和作業,設計好學案,可以適當多選些題目,文科生在此基礎上可進行適當刪改(本學期在教學內容上文理沒有什么差別),要注意低起點、多重復。說課時,要說透教材、教法、教學重點和難點,例題要說明選題意圖,要有詳細的解題過程、注意事項等,特別要在教學方法的改進上多下功夫,要從學生現有的認知水平出發,設想學生可能出現的種種問題及應對措施。作業要有針對性,層次性,既鞏固課上的知識點、題型,又要有一定的思維延展性,使文理科的學生在作業上有一定的區分度,使學有余力的學生有一個鍛煉、培養思維能力的平臺。
(3)每位教師在說課前都要做好準備,認真研究教材教法知道要說的是什么內容,包括哪些基礎知識和基本題型,了解本部分內容涉及的數學思想方法,做完說課稿上的例題、習題、作業,對例題的講解和其中蘊含的數學思想和解題技巧、計算技巧形成一個明確的認識,并寫好初備提綱,以備說課時作出必要的補充和自己的見解。每位教師可以對說課稿進行補充,也可就初備中發現的問題提問,然后全組教師進行交流,以改進教法、增刪例題和作業,使說課稿更加完善和實用。
3、集體聽評課為提高每位教師的教育教學水平,依據學校教學計劃,青年教師每周聽課1節,其他教師月至少2節。每周進行一次集體聽評課活動(詳情見附表)。評課時不僅要說優點,更要說不足和遺憾,提出意見和建議。當局者迷,這樣做有利于授課教師認清自身存在的問題,以改進教學,這也是對授課教師負責任的一種表現。通過評他人的課,對比查找自己存在的問題,有利于改進教學。
4、教案:要寫明教學時間、課題、教學重點難點、教學方法、教學過程等。集體說課后,每位教師都要結合本班學生實際情況,精心設計課堂45分鐘應如何分配到各個教學環節,要提問什么問題,提問誰,例題怎樣分析,滲透什么思想方法。教學過程要有復習回顧、導入設計、師生活動、例題的分析、作業設計與小結等。每位教師上完課之后都要思考兩個問題:我這節課上得如何?怎樣上這節課更好、最好?并結合課堂上出現的各種情況,認真寫好教學反思,或總結經驗,或反思失誤,或記錄靈感,為今后教學和科研工作積累最實用的資料。
5、上課要重視三圖四化的應用,要用好學案,設計整個課堂的教學環節;
(1)我們要率先遵守課堂常規,及時到位候課,提醒學生做好上課的準備。上課過程中,語言要簡潔生動,板書、解題、作圖要規范嚴謹,不要出現知識性錯誤。身教勝于言教,我們怎樣要求學生,就應比他們做地更好,用自身的行動為學生作好示范。
(2)把主動權交給學生,多作主持人,少當播音員。學生能做的事,就交給學生做,不要好心辦壞事。但必須指出,對于學生理解有困難、易混、易錯的知識和題目,一定要多講、講透,千萬不要為了形式上的留時間、留空間造成學生在知識和方法上出現漏洞。
(3)針對學生存在的問題,繼續加強對學生學習習慣的培養,包括如何記筆記,記什么;培養先復習再做作業的習慣;獨立思考的習慣;遇到困難查教材、查筆記的習慣等。
6、作業批改批改作業前,全組成員要校對答案,匯總解題方法。批改作業的基本要求是全批全改、及時準確。對錯誤較多的題目,認真分析原因,集中講評,并督促他們改正;對學生書寫、計算、作業整理方面存在的問題,要進行學法指導;認真書寫評語,既要指出問題,又要多些鼓勵
7、坐班:全組教師嚴格遵守學校的坐班紀律,保持辦公室的安靜,搞好辦公室的衛生,責任到人,全組教師共同努力,創設良好的辦公環境,提高干事的效率。
高一數學教學計劃5
(一)教學目標
1.知識與技能
(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集和交集.
(2)能使用Venn圖表示集合的并集和交集運算結果,體會直觀圖對理解抽象概念的作用。
(3)掌握的關的術語和符號,并會用它們正確進行集合的并集與交集運算。
2.過程與方法
通過對實例的分析、思考,獲得并集與交集運算的法則,感知并集和交集運算的實質與內涵,增強學生發現問題,研究問題的創新意識和能力.
3.情感、態度與價值觀
通過集合的并集與交集運算法則的發現、完善,增強學生運用數學知識和數學思想認識客觀事物,發現客觀規律的興趣與能力,從而體會數學的應用價值.
(二)教學重點與難點
重點:交集、并集運算的含義,識記與運用.
難點:弄清交集、并集的含義,認識符號之間的區別與聯系
(三)教學方法
在思考中感知知識,在合作交流中形成知識,在獨立鉆研和探究中提升思維能力,嘗試實踐與交流相結合.
(四)教學過程
教學環節 教學內容 師生互動 設計意圖
提出問題引入新知 思考:觀察下列各組集合,聯想實數加法運算,探究集合能否進行類似“加法”運算.
(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}
(2)A = {x | x是有理數},
B = {x | x是無理數},
C = {x | x是實數}.
師:兩數存在大小關系,兩集合存在包含、相等關系;實數能進行加減運算,探究集合是否有相應運算.
生:集合A與B的元素合并構成C.
師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運算. 生疑析疑,
導入新知
形成
概念
思考:并集運算.
集合C是由所有屬于集合A或屬于集合B的元素組成的,稱C為A和B的并集.
定義:由所有屬于集合A或集合B的元素組成的集合. 稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B = {x | x∈A,或x∈B},Venn圖表示為:
師:請同學們將上述兩組實例的共同規律用數學語言表達出來.
學生合作交流:歸納→回答→補充或修正→完善→得出并集的定義. 在老師指導下,學生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.
應用舉例 例1 設A = {4,5,6,8},B = {3,5,7,8},求A∪B.
例2 設集合A = {x | –1
例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.
例2解:A∪B = {x |–1
師:求并集時,兩集合的相同元素如何在并集中表示.
生:遵循集合元素的互異性.
師:涉及不等式型集合問題.
注意利用數軸,運用數形結合思想求解.
生:在數軸上畫出兩集合,然后合并所有區間. 同時注意集合元素的互異性. 學生嘗試求解,老師適時適當指導,評析.
固化概念
提升能力
探究性質 ①A∪A = A, ②A∪ = A,
③A∪B = B∪A,
④ ∪B, ∪B.
老師要求學生對性質進行合理解釋. 培養學生數學思維能力.
形成概念 自學提要:
①由兩集合的所有元素合并可得兩集合的并集,而由兩集合的公共元素組成的集合又會是兩集合的一種怎樣的運算?
②交集運算具有的運算性質呢?
交集的定義.
由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.
即A∩B = {x | x∈A且x∈B}
Venn圖表示
老師給出自學提要,學生在老師的引導下自我學習交集知識,自我體會交集運算的含義. 并總結交集的性質.
生:①A∩A = A;
②A∩ = ;
③A∩B = B∩A;
④A∩ ,A∩ .
師:適當闡述上述性質.
自學輔導,合作交流,探究交集運算. 培養學生的自學能力,為終身發展培養基本素質.
應用舉例 例1 (1)A = {2,4,6,8,10},
B = {3,5,8,12},C = {8}.
(2)新華中學開運動會,設
A = {x | x是新華中學高一年級參加百米賽跑的同學},
B = {x | x是新華中學高一年級參加跳高比賽的同學},求A∩B.
例2 設平面內直線l1上點的集合為L1,直線l2上點的集合為L2,試用集合的運算表示l1,l2的位置關系. 學生上臺板演,老師點評、總結.
例1 解:(1)∵A∩B = {8},
∴A∩B = C.
(2)A∩B就是新華中學高一年級中那些既參加百米賽跑又參加跳高比賽的同學組成的集合. 所以,A∩B = {x | x是新華中學高一年級既參加百米賽跑又參加跳高比賽的同學}.
例2 解:平面內直線l1,l2可能有三種位置關系,即相交于一點,平行或重合.
(1)直線l1,l2相交于一點P可表示為 L1∩L2 = {點P};
(2)直線l1,l2平行可表示為
L1∩L2 = ;
(3)直線l1,l2重合可表示為
L1∩L2 = L1 = L2. 提升學生的動手實踐能力.
歸納總結 并集:A∪B = {x | x∈A或x∈B}
交集:A∩B = {x | x∈A且x∈B}
性質:①A∩A = A,A∪A = A,
②A∩ = ,A∪ = A,
③A∩B = B∩A,A∪B = B∪A. 學生合作交流:回顧→反思→總理→小結
老師點評、闡述 歸納知識、構建知識網絡
課后作業 1.1第三課時 習案 學生獨立完成 鞏固知識,提升能力,反思升華
備選例題
例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.
【解析】法一:∵A∩B = {–2},∴–2∈B,
∴a – 1 = –2或a + 1 = –2,
解得a = –1或a = –3,
當a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.
當a = –3時,A = {–1,10,6},A不合要求,a = –3舍去
∴a = –1.
法二:∵A∩B = {–2},∴–2∈A,
又∵a2 + 1≥1,∴a2 – 3 = –2,
解得a =±1,
當a = 1時,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.
當a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.
例2 集合A = {x | –1
(1)若A∩B = ,求a的取值范圍;
(2)若A∪B = {x | x<1},求a的取值范圍.
【解析】(1)如下圖所示:A = {x | –1
∴數軸上點x = a在x = – 1左側.
∴a≤–1.
(2)如右圖所示:A = {x | –1
∴數軸上點x = a在x = –1和x = 1之間.
∴–1
例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何實數時,A∩B 與A∩C = 同時成立?
【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.
由A∩B 和A∩C = 同時成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 將3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.
當a = 5時,A = {x | x2 – 5x + 6 = 0} = {2,3},此時A∩C = {2},與題設A∩C = 相矛盾,故不適合.
當a = –2時,A = {x | x2 + 2x – 15 = 0} = {3,5},此時A∩B 與A∩C = ,同時成立,∴滿足條件的實數a = –2.
例4 設集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.
【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.
當x = 3時,A = {9,5,– 4},B = {–2,–2,9},B中元素違背了互異性,舍去.
當x = –3時,A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}滿足題意,故A∪B = {–7,– 4,–8,4,9}.
當x = 5時,A = {25,9,– 4},B = {0,– 4,9},此時A∩B = {– 4,9}與A∩B = {9}矛盾,故舍去.
綜上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.
高一數學教學計劃6
一、指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力于培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
二、教學建議
1、深入鉆研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細致領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。
2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學應用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利于學生學習的氛圍。
4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和復習是培養學生自學的好材料。
5、落實課外活動的內容。組織和加強數學興趣小組的活動內容。
三、教學內容
第一章集合與函數概念
1.通過實例,了解集合的含義,體會元素與集合的屬于關系。
2.能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。
3.理解集合之間包含與相等的含義,能識別給定集合的子集。
4.在具體情境中,了解全集與空集的含義。
5.理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集。
6.理解在給定集合中一個子集的補集的含義,會求給定子集的補集。
7.能使用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。
8.通過豐富實例,進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的定義域和值域;了解映射的概念。
9.在實際情境中,會根據不同的需要選擇恰當的方法(如圖像法、列表法、解析法)表示函數。
10.通過具體實例,了解簡單的分段函數,并能簡單應用。
11.通過已學過的函數特別是二次函數,理解函數的單調性、最大(小)值及其幾何意義;結合具體函數,了解奇偶性的含義。
12.學會運用函數圖象理解和研究函數的性質。
課時分配(14課時)
第二章基本初等函數(I)
1.通過具體實例,了解指數函數模型的實際背景。
2.理解有理指數冪的含義,通過具體實例了解實數指數冪的意義,掌握冪的運算。
3.理解指數函數的概念和意義,能借助計算器或計算機畫出具體指數函數的圖象,探索并理解指數函數的單調性與特殊點。
4.在解決簡單實際問題過程中,體會指數函數是一類重要的函數模型。
5.理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;通過閱讀材料,了解對數的發現歷史以及其對簡化運算的作用。
6.通過具體實例,直觀了解對數函數模型所刻畫的數量關系,初步理解對數函數的概念,體會對數函數是一類重要的函數模型;能借助計算器或計算機畫出具體對數函數的圖象,探索并了解對數函數的單調性和特殊點。
7.通過實例,了解冪函數的概念;結合函數的圖象,了解它們的變化情況。
課時分配(15課時)
第三章函數的應用
1.結合二次函數的圖象,判斷一元二次方程根的存在性及根的個數,從而了解函數的零點與方程根的聯系。
根據具體函數的圖象,能夠借助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法。
2.利用計算工具,比較指數函數、對數函數以及冪函數增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函數類型增長的含義。
3.收集一些社會生活中普遍使用的函數模型(指數函數、對數函數、冪函數、分段函數等)的實例,了解函數模型的廣泛應用。
4.根據某個主題,收集17世紀前后發生的一些對數學發展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關資料或現實生活中的函數實例,采取小組合作的方式寫一篇有關函數概念的形成、發展或應用的文章,在班級中進行交流。
課時分配(8課時)
3.1.1 | 方程的根與函數的零點 | 約1課時 | 10月25日 |
3.1.2 | 用二分法求方程的近似解 | 約2課時 | 10月26日27日 |
3.2.1 | 幾類不同增長的函數模型 | 約2課時 | 10月30日 | 11月3日 |
3.2.2 | 函數模型的應用實例 | 約2課時 | |
小結 | 約1課時 |
考生只要在全面復習的基礎上,抓住重點、難點、易錯點,各個擊破,夯實基礎,規范答題,一定會穩中求進,取得優異的成績。
高一數學教學計劃7
一、指導思想:
使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會提高的需要。具體目標如下。
1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。經過不一樣形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本本事。
3、提高數學地提出、分析和解決問題(包括簡單的實際問題)的本事,數學表達和交流的本事,發展獨立獲取數學知識的本事。
4、發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出確定。
5、提高學習數學的興趣,樹立學好數學的信心,構成鍥而不舍的鉆研精神和科學態度。
6、具有必須的數學視野,逐步認識數學的科學價值、應用價值和文化價值,構成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書·數學(A版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承,借簽,發展,創新之間的關系,體現基礎性,時代性,典型性和可理解性等到,具有如下特點:
1、“親和力”:以生動活潑的呈現方式,激發興趣和美感,引發學習活力。
2、“問題性”:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。
3、“科學性”與“思想性”:經過不一樣數學資料的聯系與啟發,強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維本事,培育理性精神。
4、“時代性”與“應用性”:以具有時代性和現實感的素材創設情境,加強數學活動,發展應用意識。
三、教法分析:
1、選取與資料密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生“看個究竟”的沖動,以到達培養其興趣的目的。
2、經過“觀察”,“思考”,“探究”等欄目,引發學生的思考和探索活動,切實改善學生的學習方式。
3、在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養成其邏輯思維的習慣。
四、學情分析:
兩個班均屬普高班,學習情景良好,但學生自覺性差,自我控制本事弱,所以在教學中需時時提醒學生,培養其自覺性。班級存在的最大問題是計算本事太差,學生不喜歡去算題,嫌麻煩,只注重思路,所以在以后的教學中,重點在于培養學生的計算本事,同時要進一步提高其思維本事。
同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些資料。所以時間上可能仍然吃緊。同時,其底子薄弱,所以在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
五、教學措施:
1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和提高。
2、注意從實例出發,從感性提高到理性;注意運用比較的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、加強培養學生的邏輯思維本事就解決實際問題的本事,以及培養提高學生的自學本事,養成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的本事。
5、自始至終貫徹教學四環節,針對不一樣的教材資料選擇不一樣教法。
6、重視數學應用意識及應用本事的培養。
高一數學教學計劃8
一、指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力于培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
二、高一上冊數學教學教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書數學(A版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承、借簽、發展、創新之間的關系,體現基礎性、時代性、典型性和可接受性等,具有如下特點:
1.親和力:以生動活潑的呈現方式,激發興趣和美感,引發學習激情。
2.問題性:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。
3.科學性與思想性:通過不同數學內容的聯系與啟發,強調類比、化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神。
4.時代性與應用性:以具有時代感和現實感的素材創設情境,加強數學活動,發展應用意識。
三、高一上冊數學教學教法分析:
1.選取與內容密切相關的、典型的、豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生看個究竟的沖動,以達到培養其興趣的目的。
2.通過觀察,思考,探究等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。
3.在教學中強調類比、化歸等數學思想方法,盡可能養成其邏輯思維的習慣。
四、學情分析
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著。他的特殊性就在于它的跨越性,理想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長。面對新教材的我們也是邊摸索邊改變,樹立新的教學理念,并落實在課堂教學的各個環節,才能不負眾望。我們要從學生的認識水平和實際能力出發,研究學生的心理特征,做好初三與高一的銜接工作,幫助學生解決好從初中到高中學習方法的過渡。從高一起就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法。
五、高一上冊數學教學教學措施:
1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發,從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、加強培養學生的邏輯思維能力和解決實際問題的能力,提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、重視數學應用意識及應用能力的培養。
高一數學教學計劃9
一、學生狀況分析
學生整體水平一般,成績以中等為主,中上不多,后進生也有一些。幾個班中,從上課一周來看,學生的學習積極性還是比較高,愛問問題的同學比較多,但由于基礎知識不太牢固,上課效率不是很高。
二、教材簡析
使用人教版《普通高中課程標準實驗教科書數學(A版)》,教材在堅持我國數學教育優良傳統的前提下,認真處理繼承、借鑒、發展、創新之間的關系,體現基礎性、時代性、典型性和可接受性等,具有親和力、問題性、科學性、思想性、應用性、聯系性等特點。必修1有三章(集合與函數概念;基本初等函數;函數的應用);必修2有四章(空間幾何體;點線平面間的位置關系;直線與方程;圓與方程)。
三、教學任務
本期授課內容為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成);必修2在期末考試前完成(約在12月31日前完成)。
四、教學質量目標
1。獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,體會數學思想和方法。
2。提高空間想象、抽象概括、推理論證、運算求解、數據處理等基本能力。
3。提高學生提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4。發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5。提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。
6。具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
五、促進目標達成的重點工作及措施
重點工作:
認真貫徹高中數學新課標精神,樹立新的教學理念,以“雙基”教學為主要內容,堅持“抓兩頭、帶中間、整體推進”,使每個學生的數學能力都得到提高和發展。
分層推進措施
1、重視學生非智力因素培養,要經常性地鼓勵學生,增強學生學習數學興趣,樹立勇于克服困難與戰勝困難的信心。
2、合理引入課題,由數學活動、故事、提問、師生交流等方式激發學生學習興趣,注意從實例出發,從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、加強培養學生的邏輯思維能力和解決實際問題的能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環節(引入、探究、例析、反饋),針對不同的教材內容選擇不同教法,提倡創新教學方法,把學生被動接受知識轉化主動學習知識。
6、重視數學應用意識及應用能力的培養。
高一數學教學計劃10
一、教材教法分析
本節課是x教版普通高中課程標準實驗教科書數學必修(x)的第一節課。該課是在二維平面直角坐標系基礎上的推廣,是空間立體幾何的代數化。教材通過一個實際問題的分析和解決,讓學生感受建立空間直角坐標系的必要性,內容由淺入深、環環相扣,體現了知識的發生、發展的過程,能夠很好的誘導學生積極地參與到知識的探究過程中。同時,通過對《xx》的學習和掌握將對今后學習本節內容《xx》和選修內容《xx》有著鋪墊作用。由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標系。
二、學情分析
一方面學生通過對空間幾何體:柱、錐、臺、球的學習,處理了空間中點、線、面的關系,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力。另一方面學生剛剛學習了解析幾何的基礎內容:直線和圓,對建立平面直角坐標系,根據坐標利用代數的方法處理問題有了一定的認識,因此也建立了一定的轉化和數形結合的思想。這兩方面都為學習本課內容打下了基礎。
三、教學目標
1、知識與技能
①通過具體情境,使學生感受建立空間直角坐標系的必要性。
②了解空間直角坐標系,掌握空間點的坐標的確定方法和過程。
③感受類比思想在探究新知識過程中的作用。
2、過程與方法
①結合具體問題引入,誘導學生探究。
②類比學習,循序漸進。
3、情感態度與價值觀
通過用類比的數學思想方法探究新知識,使學生感受新舊知識的聯系和研究事物從低維到高維的一般方法。通過實際問題的引入和解決,讓學生體會數學的實踐性和應用性,感受數學刻畫生活的作用,不斷地拓展自己的思維空間。
4、教學重點
本課是本節第一節課,關鍵是空間直角坐標系的建立,對今后相關內容的學習有著直接的影響作用,所以本課教學重點確立為“空間直角坐標系的理解”。
5、教學難點
先通過具體問題回顧平面直角坐標系,使學生體會用坐標刻畫平面內任意點的位置的方法,進而設置具體問題情境促發利用舊知解決問題的局限性,從而尋求新知,根據已有一定空間思維,所以能較容易得出“第三根軸”的建立,進而感受逐步發展得到“空間直角坐標系”的`建立,再逐步掌握利用坐標表示空間任意點的位置。總得來說,關鍵是具體問題情境的設立,不斷地讓學生感受,交流,討論。
高一數學教學計劃11
本學期擔任高一(9)(10)兩班的數學教學工作,兩班學生共有120人,初中的基礎參差不齊,但兩個班的學生整體水平不高;部分學生學習習慣不好,很多學生不能正確評價自己,這給教學工作帶來了一定的難度,為把本學期教學工作做好,制定如下教學工作計劃。
一、指導思想:
使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下。
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4.發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。
6.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教學目標.
(一)情意目標
(1)通過分析問題的方法的教學,培養學生的學習的興趣。
(2)提供生活背景,通過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。
(3)在探究函數、等差數列、等比數列的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識。
(4)基于情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗“發現——挫折——矛盾——頓悟——新的發現”這一科學發現歷程法。
(二)能力要求培養學生記憶能力。
(1)通過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養對數學本質問題的背景事實及具體數據的記憶。
(3)通過揭示立體集合、函數、數列有關概念、公式和圖形的對應關系,培養記憶能力。
2、培養學生的運算能力。
(1)通過概率的訓練,培養學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。
(3)通過函數、數列的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數形結合,另辟蹊徑,提高學生運算能力。
三、學生在數學學習上存在的主要問題
我校高一學生在數學學習上存在不少問題,這些問題主要表現在以下方面:
1、進一步學習條件不具備。高中數學與初中數學相比,知識的深度、廣度,能力要求都是一次飛躍。這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高。如二次函數在閉區間上的最值問題,函數值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等。客觀上這些觀點就是分化點,有的內容還是高初中教材都不講的脫節內容,如不采取補救措施,查缺補漏,分化是不可避免的。
2、被動學習。許多同學進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權。表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學內容。
不知道或不明確學習數學應具有哪些學習方法和學習策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯系,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
高一數學教學計劃12
本學期的數學教學內容是必修4包括第一章《三角函數》和第二章《平面向量》。按照數學教學大綱的要求,必修4教學需要36個課時(不包含考試與測驗 的時間);第五章的教學需要22個課時,共計需要58個課時。必修3需要30個課時。 本學期有兩次月考和五一長假,實際授課時間為18周,按每周5.5課時計算,數學課時達到93課時左右,時間比較充足。這為我們數學組全面貫徹低切入、 慢節奏的教學方針提供了保障,也是我們提高學生數學水平的又一次極好的機會。
教學計劃:
依據年級備課組的高一數學教學進度安排,本學期的期中考試(5月上旬進行)涵蓋的內容為必修3與三角函數前面內容,三角函數將在上半學期講授,這樣下半個學期的教學任務為38個課時,完成三角剩內容與平面向量的教學,及整個學期的復習。
一、指導思想
本學期高一備課組以學校工作計劃為指導,以提高教學質量為目標,以優化課堂教學為中心,團結合作,努力提高思想素質和業務素質,團結合作,互相學習,認真 備好課,上好每一節課,并結合新教材的特點,開展研究性學習的活動,在教學中,抓好基礎知識教學,著重學生能力的培養,打好基礎,全面提高,為來年高考作 好充分的準備,爭取優異的成績。
二、教學目標.
(一)情意目標
(1)通過分析問題的方法的教學,培養學生的學習的興趣。
(2)提供生活背景,通過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。
(3)在探究三角函數的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基于情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗發現挫折矛盾頓悟新的發現這一科學發現歷程法。
(二)能力要求
1、培養學生記憶能力。
(1)通過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養對數學本質問題的背景事實及具體數據的記憶。
(2)通過揭示三角函數有關概念、公式和圖形的對應關系,培養記憶能力。
2、培養學生的運算能力。
1)通過概率的訓練,培養學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。
(3)通過算法初步,1算法步驟2程序框圖(起始框,判斷框,附值框,)3silab語言(順序,條件語句,循環語句)。第二部分,統計,第三步分,概率,古典概型,幾何概型。的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數形結合,另辟蹊徑,提高學生運算能力。
三、 具體措施
1.期中考前上好第一冊(必修3),期中考后完成好必修4
2.抓好數學補差,培優活動 各班在星期1或星期4的下午
3.立足于教材。
4.要求學生完成課后練習及每一章課后習題
5、繼續學習《現代教育技術》,努力學習多媒體課件的制作。
6、繼續認真開展師徒結對活動,以老帶新。師徒間經常聽課交流,認真評課。集中備課,共同商討教材等。
7、抓好競賽輔導,
8、段統一考試在周日或者周三的晚自修時間,每隔2周考一次;
9、響應學校教務處的備課計劃安排,督促組員落實工作;
10、抓好集體備課
高一數學教學計劃13
一、設計理念
新課標指出:學生的數學學習活動不應只是接受、記憶、模仿、練習,教師應引導學生自主探究、合作學習、動手操作、閱讀自學,應注重提升學生的數學思維能力,注重發展學生的數學應用意識。
二、教材分析
本節課選自人教版《普通高中課程標準實驗教課書》必修1,第一章1.1.2集合間的基本關系。集合是數學的基本和重要語言之一,在數學以及其他的領域都有著廣泛的應用,用集合及對應的語言來描述函數,是高中階段的一個難點也是重點,因此集合語言作為一種研究工具,它的學習非常重要。本節內容主要是集合間基本關系的學習,重在讓學生類比實數間的關系,來進行探究,同時培養學生用數學符號語言,圖形語言進行交流的能力,讓學生在直觀的基礎上,理解抽象的概念,同時它也是后續學習集合運算的知識儲備,因此有著至關重要的作用。
三、學情分析
【年齡特點】:
假設本次的授課對象是普通高中高一學生,高一的學生求知欲強,精力旺盛,思維活躍,已經具備了一定的觀察、分析、歸納能力,能夠很好的配合教師開展教學活動。
【認知優點】
一方面學生已經學習了集合的概念,初步掌握了集合的三種表示法,對于本節課的學習有利一定的認知基礎。
【學習難點】
但是,本節課這種類比實數關系研究集合間的關系,這種類比學習對于學生來說還有一定的難度。
四、教學目標
? 知識與技能:
1. 理解子集、V圖、真子集、空集的概念。
2. 掌握用數學符號語言以及V圖語言表示集合間的基本關系。
3. 能夠區分集合間的包含關系與元素與集合的屬于關系。
? 過程與方法:
1. 通過類比實數間的關系,研究集合間的關系,培養學生類比、觀察、
分析、歸納的能力。
2. 培養學生用數學符號語言、圖形語言進行交流的能力。
? 情感態度與價值觀:
1.激發學生學習的興趣,圖形、符號所帶來的魅力。
2.感悟數學知識間的聯系,養成良好的思維習慣及數學品質。
五、教學重、難點
重點:
集合間基本關系。
難點:
類比實數間的關系研究集合間的關系。
六、教學手段
PPT輔助教學
七、教法、學法
? 教法:
探究式教學、講練式教學
遵循“教師主導作用與學生主體地位相結合的”教學規律,引導學生自主探究,合作學習,在教學中引導學生類比實數間關系,來研究集合間的關系,降低了學生學習的難度,同時也激發了學生學習的興趣,充分體現了以學生為本的教學思想。
? 學法:
自主探究、類比學習、合作交流
教師的“教”其本質是為了“不教”,教師除了讓學生獲得知識,提高解題能力,還應該讓學生學會學習,樂于學習,充分體現“以學定教”的教學理念。通過引導學生類比學習,同學間的合作交流,讓學生更好的學習集合的知識。
八、課型、課時
課型:新授課
課時:一課時
九、教學過程
(一)教學流程圖
(二)教學詳細過程
1..回顧就知,引出新知
問題一:實數間有相等、不等的關系,例如5=5,3﹤7,那么集合之間會有什么關系呢?
2.合作交流,探究新知
問題二:大家來仔細觀察下面幾個例子,你能發現集合間的關系嗎?
(1)A={1,2,3},B={1,2,3,4,5};
(2)設A為新華中學高一(2)班女生的全體組成集合;B為這個班學生的全體組成集合;
(3)設C={x∣x是兩條邊相等的三角形},D={x∣x是等腰三角形}
【師生活動】:學生觀察例子后,得出結論,在(1)中集合A中的任何一個元素都是集合B中的元素,教師總結,這時我們說集合A與集合B 有包含關系。(2)中的集合也是這種關一般地,對于兩個集合A,B,如果集合A中任意一個元素都是集合B中的元素,我們就說這兩集合有包含關系,稱集合A為集合B 的子集,記作:A?B(B?A),讀作A含于B或者B包含A.
在數學中我們經常用平面上封閉的曲線內部代表集合,這樣上述集合A與集合B的包含關系,可以用下圖來表示:
問題三:你能舉出幾個集合,并說出它們之間的包含關系嗎?
【師生活動】:學生自己舉出些例子,并加以說明,教師對學生的回答進行補充。
問題四:對于題目中的第3小題中的集合,你有什么發現嗎?
【師生活動1】:在(3)由于兩邊相等的三角形是等腰三角形,因此集合C,D都是所有等腰三角形的集合,集合C中任意一個元素都是集合D的元素 ,同時集合D任意一個元素都是集合C的元素,因此集合C與集合D相等,記作:C=D。
用集合的概念對相等做進一步的描述:
如果集合A是集合B 子集,且集合B是集合A的子集,此時集合A與集合B的元素一樣,因此集合A與集合B 相等,記作A=B。
強調:如果集合A?B,但存在元素x∈B, 且x?A,我們稱集合A是集合B的真子集,記作:A?B
【師生活動2】:教師引導學生以(1)為例,指出A?B,但4∈B, 4?A,教師總結所以集合A是集合B的真子集。
【師生活動】?,并規定空集是任何集合的
4.思維拓展,討論新知
問題六:包含關系{a}?A與屬于關系a∈A有什么區別?請大家用具體例子來說明
【師生活動1】:學生以(1)為例{1,2}?A,2∈A,說明前者是集合之間的關系,后者是
問題七:經過以上集合之間關系的學習,你有什么結論?
【師生活動】:師生討論得出結論:
(1)任何一個集合都是它本身的子集,即A?A
5.練習反饋,培養能力
例1寫出集合{a,b}的所有子集,并指出哪些是真子集
例2用適當的符號填空
(1)a_{a,b,c}
(2){0,1}_N
(3){2,1}_{X∣X2-3X+2=0}
6.課堂小結,布置作業
這節課你學到了哪些知識?
小結 知識上:
能力上:
情感上:
作業:必做題:P8,3
思考題:實數間有運算,那集合呢?
十、板書設計
十一、教學反思
高一數學教學計劃14
教材分析:
解不等式是不等式學習的主要內容,是中學數學的一項重要技能。主要類型有:一元一次不等式或不等式組的解法,一元二次不等式或不等式組的解法。其中,一次不等式的解法是基礎,初中已經學習,二次不等式是重點,也是學習的難點。作為數學重要的工具及方法,經常運用于其它數學知識之中。一元二次不等式的解法主要有二種,課本上介紹的是“數形結合”方法,這種方法將二次函數,二次方程結合為一體,并且借助“圖形”直觀地得出答案,充分展現了數學知識之間的內在聯系,另外也展現了“數形結合”思想方法的巨大魅力。然而,個人認為,還有一種更加自然的方法,將二次不等式轉化為一次不等式組的方法,這種方法思路自然,同時也體現了“轉化”思想,難度也不大,應該更加符合學生的實際思維及思路。
學情分析:
初中已經學習了一元一次不等式(或組)的解法,積累了一定的解題經驗。同時,對于二次方程,二次函數等相關知識學生均較為熟悉。然而,根據自己的調查,一少部分學生對于一元一次不等式及不等式組的解法都表現出一定程度的陌生。進而,可以先從復習簡單的一次不等式及不等式組入手加以展開教學。
學生心理方面,學習積極性較高,對數學的學習興趣、信心也比較理想,有較強的學習動機——考上大學,盡管是外在的誘因。
教學目標:
①知識與技能
熟練掌握一元一次不等式及不等式組的解法,初步學會兩種方法求出一元二次不等式的解集
②過程與方法
經歷不等式求解的探索及發現過程,體驗“數形結合及轉化”思想的魅力,掌握方法,學會學習
③情感、態度及價值觀
在上述過程中,體驗成功,激發了對數學學習的興趣及信心,發展了對數學學習的積極情感,增強了學習的內在動機
教學重點:
一元二次不等式的解法
教學難點:
解法的探索及發現,關鍵在于“識圖能力”
反思:
今天的課堂,這個難點突破欠缺力量,主要緣于自己備課時對難點考慮不到位,進而缺乏必要的設計。在課堂上,就難點特別與個別差生進行了交流,并且給予了幫助及指導。在指導過程中,我找出了他們困難的二個環節:
首先,對平面曲線上點的橫坐標與縱座標之間的對應關系表現陌生,進而對它們的取值變化情況感到費解。
其次,是差生的思維能力尚處于“經驗思維”,辯證思維能力薄弱,進而對運動中的點的坐標取值范圍只能是“一籌莫展”。
在了解情況后,遵循“最近發展區”原理,以問題串的形式給差生提供必要的幫助后,差生也順利度過了難關。由此足以說明,從知識的角度而言,“沒有教不好的學生,只有不會教的教師:這句話還是相當有道理的。當然,這一切的前提就是對學生“學情”的掌握。美國著名心理學家、結構主義學派的代表人布魯納也有類似觀點:給我一打健康的兒童,我可以教會他任何任何學科任何年齡段的任何知識。
教學程序:
一、復習一元一次不等式及不等式組的解法
以題組形式設計習題
①2x+3>7
②不等式組
③ax>b
二、創設二次不等式的生活背景實例,引入課題
采用課本上的實例,有關網絡收費問題
三、一元二次不等式的解法探索
(1)
在教師的啟發引導下,從特殊到一般,學生經歷“轉化”方法的探索及發現過程。
由于這種方法課本沒有給出,進而課堂上不作為重點,重在引導學生自行歸納、體驗及總結“轉化”思想,最后以課外思考題的形式設計相應習題。
(2)
采取啟發式教學,師生共同經歷“數形結合”方法的探索及發現過程,引導學生歸納出主要的解題步驟。今天的課堂上,這些解題步驟全部由學生的語言組織并完成,并撰寫在黑板上,教師沒有作任何干涉。我一直認為,只有學生自己親身體驗的知識才是有意義的知識,盡管這些知識不完整,語言或許不規范,思維或許不嚴密。
之后,從特殊到一般,研究一般的二元一次不等式的解法。由于經歷了前面的解題過程,這個環節全部放手讓學生完成,鼓勵他們通過或獨立或合作的方式解決學習任務,完成課本上的表格。
反思:根據課堂反饋,二個班級大約有70%的同學能夠勝任這個任務。于是,在大多數學生完成的基礎上,我又進行了一次講解,特別加強了對“識圖”環節的講解力度,力求突破難點。
四、練習環節
可以說,即使到了高三,仍然有不少同學對于一元二次不等式解法的困惑。因此,熟練掌握二次不等式的解法,既是重點,也是難點。從學習類型看,這節課顯然屬于技能課,對于技能的學習及掌握,關鍵是強化練習,“力求熟能生巧”,達到自動化的水平。
課本上,配置了不少練習題。對于練習,我采取多種方式,或叫學生上黑板板書,借助學生練習規范解題格式;或者口答,說解題思路及答案;或者下面獨立練習。
五、課堂小結
知識,思想、方法及感悟等
六、課后作業
①作業設計:分成A、B兩層,難度不一,讓學生自主選擇,均來源于課本上的A組或B組
②課外思考題:
1比較兩種解題方法即“轉化及數形結合”方法的優劣,以及它們之間的異同
2已知不等式mx^2-(m-2)x+m>0的解集為R,求m的取值范圍
變式一:戓將R改為空集,此時結論如何
變式二:仿上,自己改編條件,并解之。
反思:課外思考題的設計,可以提升課堂容量,深化課堂知識,提高課堂思維含量,為優生服務,發展學生的思維能力,激發他們的學習興趣。同時,加強變式教學,可以充分拓展習題的潛在價值,期望實現“舉一反三”的目標。
高一數學教學計劃15
一、學生狀況分析
學生整體水平一般,成績以中等為主,中上不多,后進生也有一些。幾個班中,從上課一周來看,學生的學習進取性還是比較高,愛問問題的同學比較多,但由于基礎知識不太牢固,上課效率不是很高。
二、教材分析
使用北師大版《普通高中課程標準實驗教科書·數學》,教材在堅持我國數學教育優良傳統的前提下,認真處理繼承、借鑒、發展、創新之間的關系,體現基礎性、時代性、典型性和可理解性等,具有親和力、問題性、科學性、思想性、應用性、聯系性等特點。必修1有三章(集合與函數概念;基本初等函數;函數的應用);必修2有四章(空間幾何體;點線平面間的位置關系;直線與方程;圓與方程)。
三、教學任務
本期授課資料為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成);必修2在期末考試前完成(約在12月31日前完成)。
四、教學質量目標
1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,體會數學思想和方法。
2、提高空間想象、抽象概括、推理論證、運算求解、數據處理等基本本事。
3、提高學生提出、分析和解決問題(包括簡單的實際問題)的本事,數學表達和交流的本事,發展獨立獲取數學知識的本事。
4、發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出確定。
5、提高學習數學的興趣,樹立學好數學的信心,構成鍥而不舍的鉆研精神和科學態度。
6、具有必須的數學視野,逐步認識數學的科學價值、應用價值和文化價值,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
五、促進目標達成的重點工作
認真貫徹高中數學新課標精神,樹立新的教學理念,以“雙基”教學為主要資料,堅持“抓兩頭、帶中間、整體推進”,使每個學生的數學本事都得到提高和發展。
教學方法及推進措施
六、相關措施:
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著。他的特殊性就在于它的跨越性,夢想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,應對新教材的我們也是邊摸索邊改變,樹立新的教學理念,并落實在課堂教學的各個環節,才能不負眾望。我們要從學生的認識水平和實際本事出發,研究學生的心理特征,做好初三與高一的銜接工作,幫忙學生解決好從初中到高中學習方法的過渡。從高一齊就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法。具體措施如下:
(1)注意研究學生,做好初、高中學習方法的銜接工作。
(2)集中精力打好基礎,分項突破難點。所列基礎知識依據課程標準設計,著眼于基礎知識與重點資料,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙于過早的拔高,上難題。同時應放眼高中教學全局,注意高考命題中的知識要求,本事要求及新趨勢,這樣才能統籌安排,循序漸進,使高一的數學教學與高中教學的全局有機結合。
(3)培養學生解答考題的本事,經過例題,從形式和資料兩方應對所學知識進行本事方面的分析,引導學生了解數學需要哪些本事要求。
(4)讓學生經過單元考試,檢測自我的實際應用本事,從而及時總結經驗,找出不足,做好充分的準備
(5)抓好尖子生與后進生的輔導工作,提前展開數學奧競選拔和數學基礎輔導。
(6)重視數學應用意識及應用本事的培養。
(7)重視學生非智力因素培養,要經常性地鼓勵學生,增強學生學習數學興趣,樹立勇于克服困難與戰勝困難的信心。
(8)合理引入課題,由數學活動、故事、提問、師生交流等方式激發學生學習興趣,注意從實例出發,從感性提高到理性;注意運用比較的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
(9)加強培養學生的邏輯思維本事和解決實際問題的本事,以及培養提高學生的自學本事,養成善于分析問題的習慣,進行辨證唯物主義教育。
(10)抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的本事。
(11)自始至終貫徹教學四環節(引入、探究、例析、反饋),針對不一樣的教材資料選擇不一樣教法,提倡創新教學方法,把學生被動理解知識轉化主動學習知識。
七、教學進度安排:
(略)
【高一數學教學計劃】相關文章:
高一的數學教學計劃06-14
高一數學教學計劃08-26
高一數學的教學計劃06-13
高一數學-教學計劃06-11
高一數學教學計劃08-21
高一學生數學教學計劃03-30
高一數學的教學計劃05-04
高一數學教學計劃03-07
高一優秀數學教學計劃06-12
高一數學教學計劃05-08