- 相關推薦
高一數學教案(精選15篇)
作為一名專為他人授業解惑的人民教師,常常要根據教學需要編寫教案,教案是教學活動的總的組織綱領和行動方案。那么問題來了,教案應該怎么寫?以下是小編幫大家整理的高一數學教案,僅供參考,大家一起來看看吧。
高一數學教案1
1、知識與技能
(1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);
(2)理解任意角的三角函數不同的定義方法;
(3)了解如何利用與單位圓有關的有向線段,將任意角α的正弦、余弦、正切函數值分別用正弦線、余弦線、正切線表示出來;
(4)掌握并能初步運用公式一;
(5)樹立映射觀點,正確理解三角函數是以實數為自變量的函數.
2、過程與方法
初中學過:銳角三角函數就是以銳角為自變量,以比值為函數值的函數.引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數值的求法,最終得到任意角三角函數的定義.根據角終邊所在位置不同,分別探討各三角函數的定義域以及這三種函數的值在各象限的符號.最后主要是借助有向線段進一步認識三角函數.講解例題,總結方法,鞏固練習.
3、情態與價值
任意角的三角函數可以有不同的定義方法,而且各種定義都有自己的特點.過去習慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現出從銳角三角函數到任意角的三角函數的推廣,有利于引導學生從自己已有認知基礎出發學習三角函數,但它對準確把握三角函數的本質有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數概念中的“數集到數集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數值是一個確定的實數也有不同,這些都會影響學生對三角函數概念的理解.
本節利用單位圓上點的坐標定義任意角的正弦函數、余弦函數.這個定義清楚地表明了正弦、余弦函數中從自變量到函數值之間的對應關系,也表明了這兩個函數之間的關系.
教學重難點
重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);終邊相同的角的同一三角函數值相等(公式一).
難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);三角函數線的正確理解.
高一數學教案2
[三維目標]
一、知識與技能:
1、鞏固集合、子、交、并、補的概念、性質和記號及它們之間的關系
2、了解集合的運算包含了集合表示法之間的轉化及數學解題的一般思想
3、了解集合元素個數問題的討論說明
二、過程與方法
通過提問匯總練習提煉的形式來發掘學生學習方法
三、情感態度與價值觀
培養學生系統化及創造性的思維
[教學重點、難點]:會正確應用其概念和性質做題 [教 具]:多媒體、實物投影儀
[教學方法]:講練結合法
[授課類型]:復習課
[課時安排]:1課時
[教學過程]:集合部分匯總
本單元主要介紹了以下三個問題:
1,集合的含義與特征
2,集合的表示與轉化
3,集合的基本運算
一,集合的含義與表示(含分類)
1,具有共同特征的對象的全體,稱一個集合
2,集合按元素的個數分為:有限集和無窮集兩類
高一數學教案3
教學目標
1.使學生理解函數單調性的概念,并能判斷一些簡單函數在給定區間上的單調性.
2.通過函數單調性概念的教學,培養學生分析問題、認識問題的能力.通過例題培養學生利用定義進行推理的邏輯思維能力.
3.通過本節課的教學,滲透數形結合的數學思想,對學生進行辯證唯物主義的教育.
教學重點與難點
教學重點:函數單調性的概念.
教學難點:函數單調性的判定.
教學過程設計
一、引入新課
師:請同學們觀察下面兩組在相應區間上的函數,然后指出這兩組函數之間在性質上的主要區別是什么?
(用投影幻燈給出兩組函數的圖象.)
第一組:
第二組:
生:第一組函數,函數值y隨x的增大而增大;第二組函數,函數值y隨x的增大而減小.
師:(手執投影棒使之沿曲線移動)對.他(她)答得很好,這正是兩組函數的主要區別.當x變大時,第一組函數的函數值都變大,而第二組函數的函數值都變小.雖然在每一組函數中,函數值變大或變小的方式并不相同,但每一組函數卻具有一種共同的性質.我們在學習一次函數、二次函數、反比例函數以及冪函數時,就曾經根據函數的圖象研究過函數的函數值隨自變量的變大而變大或變小的性質.而這些研究結論是直觀地由圖象得到的.在函數的集合中,有很多函數具有這種性質,因此我們有必要對函數這種性質作更進一步的一般性的討論和研究,這就是我們今天這一節課的內容.
(點明本節課的內容,既是曾經有所認識的,又是新的知識,引起學生的注意.)
二、對概念的分析
(板書課題:)
師:請同學們打開課本第51頁,請××同學把增函數、減函數、單調區間的定義朗讀一遍.
(學生朗讀.)
師:好,請坐.通過剛才閱讀增函數和減函數的定義,請同學們思考一個問題:這種定義方法和我們剛才所討論的函數值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?
生:我認為是一致的.定義中的“當x1<x2時,都有f(x1)<f(x2)”描述了y隨x的增大而增大;“當x1<x2時,都有f(x1)>f(x2)”描述了y隨x的增大而減少.
師:說得非常正確.定義中用了兩個簡單的不等關系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻劃了函數的單調遞增或單調遞減的性質.這就是數學的魅力!
(通過教師的情緒感染學生,激發學生學習數學的興趣.)
師:現在請同學們和我一起來看剛才的兩組圖中的第一個函數y=f1(x)和y=f2(x)的圖象,體會這種魅力.
(指圖說明.)
師:圖中y=f1(x)對于區間[a,b]上的任意x1,x2,當x1<x2時,都有f1(x1)<f1(x),因此y=f1(x)在區間[a,b]上是單調遞增的,區間[a,b]是函數y=f1(x)的單調增區間;而圖中y=f2(x)對于區間[a,b]上的任意x1,x2,當x1<x2時,都有f2(x1)>f2(x2),因此y=f2(x)在區間[a,b]上是單調遞減的,區間[a,b]是函數y=f2(x)的單調減區間.
(教師指圖說明分析定義,使學生把函數單調性的定義與直觀圖象結合起來,使新舊知識融為一體,加深對概念的理解.滲透數形結合分析問題的數學思想方法.)
師:因此我們可以說,增函數就其本質而言是在相應區間上較大的自變量對應……
(不把話說完,指一名學生接著說完,讓學生的思維始終跟著老師.)
生:較大的函數值的函數.
師:那么減函數呢?
生:減函數就其本質而言是在相應區間上較大的自變量對應較小的函數值的函數.
(學生可能回答得不完整,教師應指導他說完整.)
師:好.我們剛剛以增函數和減函數的定義作了初步的分析,通過閱讀和分析你認為在定義中我們應該抓住哪些關鍵詞語,才能更透徹地認識定義?
(學生思索.)
學生在高中階段以至在以后的學習中經常會遇到一些概念(或定義),能否抓住定義中的關鍵詞語,是能否正確地、深入地理解和掌握概念的重要條件,更是學好數學及其他各學科的重要一環.因此教師應該教會學生如何深入理解一個概念,以培養學生分析問題,認識問題的能力.
(教師在學生思索過程中,再一次有感情地朗讀定義,并注意在關鍵詞語處適當加重語氣.在學生感到無從下手時,給以適當的提示.)
生:我認為在定義中,有一個詞“給定區間”是定義中的關鍵詞語.
師:很好,我們在學習任何一個概念的時候,都要善于抓住定義中的關鍵詞語,在學習幾個相近的概念時還要注意區別它們之間的不同.增函數和減函數都是對相應的區間而言的,離開了相應的區間就根本談不上函數的增減性.請大家思考一個問題,我們能否說一個函數在x=5時是遞增或遞減的?為什么?
生:不能.因為此時函數值是一個數.
師:對.函數在某一點,由于它的函數值是唯一確定的常數(注意這四個字“唯一確定”),因而沒有增減的變化.那么,我們能不能脫離區間泛泛談論某一個函數是增函數或是減函數呢?你能否舉一個我們學過的例子?
生:不能.比如二次函數y=x2,在y軸左側它是減函數,在y軸右側它是增函數.因而我們不能說y=x2是增函數或是減函數.
(在學生回答問題時,教師板演函數y=x2的圖像,從“形”上感知.)
師:好.他(她)舉了一個例子來幫助我們理解定義中的詞語“給定區間”.這說明是函數在某一個區間上的性質,但這不排斥有些函數在其定義域內都是增函數或減函數.因此,今后我們在談論函數的增減性時必須指明相應的區間.
師:還有沒有其他的關鍵詞語?
生:還有定義中的“屬于這個區間的任意兩個”和“都有”也是關鍵詞語.
師:你答的很對.能解釋一下為什么嗎?
(學生不一定能答全,教師應給予必要的提示.)
師:“屬于”是什么意思?
生:就是說兩個自變量x1,x2必須取自給定的區間,不能從其他區間上取.
師:如果是閉區間的話,能否取自區間端點?
生:可以.
師:那么“任意”和“都有”又如何理解?
生:“任意”就是指不能取特定的值來判斷函數的增減性,而“都有”則是說只要x1<x2,f(x1)就必須都小于f(x2),或f(x1)都大于f(x2).
師:能不能構造一個反例來說明“任意”呢?
(讓學生思考片刻.)
生:可以構造一個反例.考察函數y=x2,在區間[-2,2]上,如果取兩個特定的值x1=-2,x2=1,顯然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的減函數,那就錯了.
師:那么如何來說明“都有”呢?
生:y=x2在[-2,2]上,當x1=-2,x2=-1時,有f(x1)>f(x2);當x1=1,x2=2時,有f(x1)<f(x2),這時就不能說y=x2,在[-2,2]上是增函數或減函數.
師:好極了!通過分析定義和舉反例,我們知道要判斷函數y=f(x)在某個區間內是增函數或減函數,不能由特定的兩個點的情況來判斷,而必須嚴格依照定義在給定區間內任取兩個自變量x1,x2,根據它們的函數值f(x1)和f(x2)的大小來判定函數的增減性.
(教師通過一系列的設問,使學生處于積極的思維狀態,從抽象到具體,并通過反例的反襯,使學生加深對定義的理解.在概念教學中,反例常常幫助學生更深刻地理解概念,鍛煉學生的發散思維能力.)
師:反過來,如果我們已知f(x)在某個區間上是增函數或是減函數,那么,我們就可以通過自變量的大小去判定函數值的大小,也可以由函數值的大小去判定自變量的大小.即一般成立則特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關系.
(用辯證法的原理來解釋數學知識,同時用數學知識去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內涵和外延,培養學生學習的能力.)
三、概念的應用
例1 圖4所示的是定義在閉區間[-5,5]上的函數f(x)的圖象,根據圖象說出f(x)的單調區間,并回答:在每一個單調區間上,f(x)是增函數還是減函數?
(用投影幻燈給出圖象.)
生甲:函數y=f(x)在區間[-5,-2],[1,3]上是減函數,因此[-5,-2],[1,3]是函數y=f(x)的單調減區間;在區間[-2,1],[3,5]上是增函數,因此[-2,1],[3,5]是函數y=f(x)的單調增區間.
生乙:我有一個問題,[-5,-2]是函數f(x)的單調減區間,那么,是否可認為(-5,-2)也是f(x)的單調減區間呢?
師:問得好.這說明你想的很仔細,思考問題很嚴謹.容易證明:若f(x)在[a,b]上單調(增或減),則f(x)在(a,b)上單調(增或減).反之不然,你能舉出反例嗎?一般來說.若f(x)在[a,(增或減).反之不然.
例2 證明函數f(x)=3x+2在(-∞,+∞)上是增函數.
師:從函數圖象上觀察固然形象,但在理論上不夠嚴格,尤其是有些函數不易畫出圖象,因此必須學會根據解析式和定義從數量上分析辨認,這才是我們研究函數單調性的基本途徑.
(指出用定義證明的必要性.)
師:怎樣用定義證明呢?請同學們思考后在筆記本上寫出證明過程.
(教師巡視,并指定一名中等水平的學生在黑板上板演.學生可能會對如何比較f(x1)和f(x2)的大小關系感到無從入手,教師應給以啟發.)
師:對于f(x1)和f(x2)我們如何比較它們的大小呢?我們知道對兩個實數a,b,如果a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號來決定兩個數的大小關系.
生:(板演)設x1,x2是(-∞,+∞)上任意兩個自變量,當x1<x2時,
f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,
所以f(x)是增函數.
師:他的證明思路是清楚的.一開始設x1,x2是(-∞,+∞)內任意兩個自變量,并設x1<x2(邊說邊用彩色粉筆在相應的語句下劃線,并標注“①→設”),然后看f(x1)-f(x2),這一步是證明的關鍵,再對式子進行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線并標注”②→作差,變形”).但美中不足的是他沒能說明為什么f(x1)-f(x2)<0,沒有用到開始的假設“x1<x2”,不要以為其顯而易見,在這里一定要對變形后的式子說明其符號.應寫明“因為x1<x2,所以x1-x2<0,從而f(x1)-f(x2)<0,即f(x1)<f(x2).”這一步可概括為“定符號”(在黑板上板演,并注明“③→定符號”).最后,作為證明題一定要有結論,我們把它稱之為第四步“下結論”(在相應位置標注“④→下結論”).
這就是我們用定義證明函數增減性的四個步驟,請同學們記住.需要指出的是第二步,如果函數y=f(x)在給定區間上恒大于零,也可以小.
(對學生的做法進行分析,把證明過程步驟化,可以形成思維的定勢.在學生剛剛接觸一個新的知識時,思維定勢對理解知識本身是有益的,同時對學生養成一定的思維習慣,形成一定的解題思路也是有幫助的.)
調函數嗎?并用定義證明你的結論.
師:你的結論是什么呢?
上都是減函數,因此我覺得它在定義域(-∞,0)∪(0,+∞)上是減函數.
生乙:我有不同的意見,我認為這個函數不是整個定義域內的減函數,因為它不符合減函數的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2顯然成立,而f(x1)<0,f(x2)>0,顯然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定義域內的減函數.
生:也不能這樣認為,因為由圖象可知,它分別在(-∞,0)和(0,+∞)上都是減函數.
域內的增函數,也不是定義域內的減函數,它在(-∞,0)和(0,+∞)每一個單調區間內都是減函數.因此在函數的幾個單調增(減)區間之間不要用符號“∪”連接.另外,x=0不是定義域中的元素,此時不要寫成閉區間.
上是減函數.
(教師巡視.對學生證明中出現的問題給予點拔.可依據學生的問題,給出下面的提示:
(1)分式問題化簡方法一般是通分.
(2)要說明三個代數式的符號:k,x1·x2,x2-x1.
要注意在不等式兩邊同乘以一個負數的時候,不等號方向要改變.
對學生的解答進行簡單的分析小結,點出學生在證明過程中所出現的問題,引起全體學生的重視.)
四、課堂小結
師:請同學小結一下這節課的主要內容,有哪些是應該特別注意的?
(請一個思路清晰,善于表達的學生口述,教師可從中給予提示.)
生:這節課我們學習了函數單調性的定義,要特別注意定義中“給定區間”、“屬于”、“任意”、“都有”這幾個關鍵詞語;在寫單調區間時不要輕易用并集的符號連接;最后在用定義證明時,應該注意證明的四個步驟.
五、作業
1.課本P53練習第1,2,3,4題.
數.
=a(x1-x2)(x1+x2)+b(x1-x2)
=(x1-x2)[a(x1+x2)+b].(*)
+b>0.由此可知(*)式小于0,即f(x1)<f(x2).
課堂教學設計說明
是函數的一個重要性質,是研究函數時經常要注意的一個性質.并且在比較幾個數的大小、對函數作定性分析、以及與其他知識的綜合應用上都有廣泛的應用.對學生來說,早已有所知,然而沒有給出過定義,只是從直觀上接觸過這一性質.學生對此有一定的感性認識,對概念的理解有一定好處,但另一方面學生也會覺得是已經學過的知識,感覺乏味.因此,在設計教案時,加強了對概念的分析,希望能夠使學生認識到看似簡單的定義中有不少值得去推敲、去琢磨的東西,其中甚至包含著辯證法的原理.
另外,對概念的分析是在引進一個新概念時必須要做的,對概念的深入的正確的理解往往是學生認知過程中的難點.因此在本教案的設計過程中突出對概念的分析不僅僅是為了分析函數單調性的定義,而且想讓學生對如何學會、弄懂一個概念有初步的認識,并且在以后的學習中學有所用.
還有,使用函數單調性定義證明是一個難點,學生剛剛接觸這種證明方法,給出一定的步驟是必要的,有利于學生理解概念,也可以對學生掌握證明方法、形成證明思路有所幫助.另外,這也是以后要學習的不等式證明方法中的比較化的基本思路,現在提出要求,對今后的教學作一定的鋪墊.
高一數學教案4
學習是一個潛移默化、厚積薄發的過程。編輯老師編輯了高一數學教案:數列,希望對您有所幫助!
教學目標
1.使學生理解數列的概念,了解數列通項公式的意義,了解遞推公式是給出數列的一種方法,并能根據遞推公式寫出數列的前幾項.
(1)理解數列是按一定順序排成的一列數,其每一項是由其項數唯一確定的.
(2)了解數列的各種表示方法,理解通項公式是數列第項與項數的關系式,能根據通項公式寫出數列的前幾項,并能根據給出的一個數列的前幾項寫出該數列的一個通項公式.
(3)已知一個數列的遞推公式及前若干項,便確定了數列,能用代入法寫出數列的前幾項.
2.通過對一列數的觀察、歸納,寫出符合條件的一個通項公式,培養學生的觀察能力和抽象概括能力.
3.通過由求的過程,培養學生嚴謹的科學態度及良好的思維習慣.
教學建議
(1)為激發學生學習數列的興趣,體會數列知識在實際生活中的作用,可由實際問題引入,從中抽象出數列要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還有物品堆放個數的計算等.
(2)數列中蘊含的函數思想是研究數列的指導思想,應及早引導學生發現數列與函數的關系.在教學中強調數列的項是按一定順序排列的,“次序”便是函數的自變量,相同的數組成的數列,次序不同則就是不同的數列.函數表示法有列表法、圖象法、解析式法,類似地,數列就有列舉法、圖示法、通項公式法.由于數列的自變量為正整數,于是就有可能相鄰的兩項(或幾項)有關系,從而數列就有其特殊的表示法——遞推公式法.
(3)由數列的通項公式寫出數列的前幾項是簡單的代入法,教師應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助.
(4)由數列的前幾項寫出數列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規律性的結論,如正負相間用來調整等.如果學生一時不能寫出通項公式,可讓學生依據前幾項的規律,猜想該數列的下一項或下幾項的值,以便尋求項與項數的關系.
(5)對每個數列都有求和問題,所以在本節課應補充數列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關系,再由特殊到一般,研究其一般規律,并給出嚴格的推理證明(強調的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況.
(6)給出一些簡單數列的通項公式,可以求其最大項或最小項,又是函數思想與方法的體現,對程度好的學生應提出這一問題,學生運用函數知識是可以解決的.
上述提供的高一數學教案:數列希望能夠符合大家的實際需要!
高一數學教案5
教學目標
1.了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法.
(1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念.
(2)能從數和形兩個角度認識單調性和奇偶性.
(3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程.
2.通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想.
3.通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度.
教學建議
一、知識結構
(1)函數單調性的概念。包括增函數、減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系.
(2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像.
二、重點難點分析
(1)本節教學的重點是函數的單調性,奇偶性概念的形成與認識.教學的難點是領悟函數單調性, 奇偶性的本質,掌握單調性的證明.
(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它.這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點.
三、教法建議
(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數.反比例函數圖象出發,回憶圖象的增減性,從這點感性認識出發,通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來.在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來.
(2)函數單調性證明的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律.
函數的奇偶性概念引入時,可設計一個課件,以的圖象為例,讓自變量互為相反數,觀察對應的函數值的變化規律,先從具體數值開始,逐漸讓在數軸上動起來,觀察任意性,再讓學生把看到的用數學表達式寫出來.經歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數多個等式,是個恒等式.關于定義域關于原點對稱的問題,也可借助課件將函數圖象進行多次改動,幫助學生發現定義域的對稱性,同時還可以借助圖象說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件.
高一數學教案6
知識結構
重難點分析
本節的重點是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計算進行,而二次根式的化簡不但涉及到前面學習過的算術平方根、二次根式等概念與二次根式的運算性質,還要牽涉到絕對值以及各種非負數、因式分解等知識,在應用中常常需要對字母進行分類討論.
本節的難點是正確理解與應用公式.這個公式的表達形式對學生來說,比較生疏,而實際運用時,則要牽涉到對字母取值范圍的討論,學生往往容易出現錯誤.
教法建議
1.性質的引入方法很多,以下2種比較常用:
(1)設計問題引導啟發:由設計的問題
1)、、各等于什么?
2)、、各等于什么?
啟發、引導學生猜想出
(2)從算術平方根的意義引入.
2.性質的鞏固有兩個方面需要注意:
(1)注意與性質進行對比,可出幾道類型不同的題進行比較;
(2)學生初次接觸這種形式的表示方式,在教學時要注意細分層次加以鞏固,如單個數字,單個字母,單項式,可進行因式分解的多項式,等等.
(第1課時)
一、教學目標
1.掌握二次根式的性質
2.能夠利用二次根式的性質化簡二次根式
3.通過本節的學習滲透分類討論的數學思想和方法
二、教學設計
對比、歸納、總結
三、重點和難點
1.重點:理解并掌握二次根式的性質
2.難點:理解式子中的可以取任意實數,并能根據字母的取值范圍正確地化簡有關的二次根式.
四、課時安排
1課時
五、教B具學具準備
投影儀、膠片、多媒體
六、師生互動活動設計
復習對比,歸納整理,應用提高,以學生活動為主
七、教學過程
一、導入新課
我們知道,式子()表示非負數的算術平方根.
問:式子的意義是什么?被開方數中的表示的是什么數?
答:式子表示非負數的算術平方根,即,且,從而可以取任意實數.
二、新課
計算下列各題,并回答以下問題:
(1);(2);(3);
1.各小題中被開方數的冪的底數都是什么數?
2.各小題的結果和相應的被開方數的冪的底數有什么關系?
3.用字母表示被開方數的冪的底數,將有怎樣的結論?并用語言敘述你的結論.
高一數學教案7
一、教學目標
1、理解一次函數和正比例函數的概念,以及它們之間的關系。
2、能根據所給條件寫出簡單的一次函數表達式。
二、能力目標
1、經歷一般規律的探索過程、發展學生的抽象思維能力。
2、通過由已知信息寫一次函數表達式的過程,發展學生的數學應用能力。
三、情感目標
1、通過函數與變量之間的關系的聯系,一次函數與一次方程的聯系,發展學生的數學思維。
2、經歷利用一次函數解決實際問題的過程,發展學生的數學應用能力。
四、教學重難點
1、一次函數、正比例函數的概念及關系。
2、會根據已知信息寫出一次函數的表達式。
五、教學過程
1、新課導入
有關函數問題在我們日常生活中隨處可見,如彈簧秤有自然長度,在彈性限度內,隨著所掛物體的重量的'增加,彈簧的長度相應的會拉長,那么所掛物體的重量與彈簧的長度之間就存在某種關系,究竟是什么樣的關系,
請看:某彈簧的自然長度為3厘米,在彈性限度內,所掛物體的質量x每增加1千克、彈簧長度y增加0.5厘米。
(1)計算所掛物體的質量分別為1千克、 2千克、 3千克、 4千克、 5千克時彈簧的長度,
(2)你能寫出x與y之間的關系式嗎?
分析:當不掛物體時,彈簧長度為3厘米,當掛1千克物體時,增加0.5厘米,總長度為3.5厘米,當增加1千克物體,即所掛物體為2千克時,彈簧又增加0.5厘米,總共增加1厘米,由此可見,所掛物體每增加1千克,彈簧就伸長0.5厘米,所掛物體為x千克,彈簧就伸長0.5x厘米,則彈簧總長為原長加伸長的長度,即y=3+0.5x。
2、做一做
某輛汽車油箱中原有汽油 100升,汽車每行駛 50千克耗油 9升。你能寫出x與y之間的關系嗎?(y=1000。18x或y=100 x)
接著看下面這些函數,你能說出這些函數有什么共同的特點嗎?上面的幾個函數關系式,都是左邊是因變量,右邊是含自變量的代數式,并且自變量和因變量的指數都是一次。
3、一次函數,正比例函數的概念
若兩個變量x,y間的關系式可以表示成y=kx+b(k,b為常數k≠0)的形式,則稱y是x的一次函數(x為自變量,y為因變量)。特別地,當b=0時,稱y是x的正比例函數。
4、例題講解
例1:下列函數中,y是x的一次函數的是( )
①y=x6;②y= ;③y= ;④y=7x
A、①②③ B、①③④ C、①②③④ D、②③④
分析:這道題考查的是一次函數的概念,特別要強調一次函數自變量與因變量的指數都是1,因而②不是一次函數,答案為B
高一數學教案8
學習目標:
(1)理解函數的概念
(2)會用集合與對應語言來刻畫函數,
(3)了解構成函數的要素。
重點:
函數概念的理解
難點:
函數符號y=f(x)的理解
知識梳理:
自學課本P29—P31,填充以下空格。
1、設集合A是一個非空的實數集,對于A內 ,按照確定的對應法則f,都有 與它對應,則這種對應關系叫做集合A上的一個函數,記作 。
2、對函數 ,其中x叫做 ,x的取值范圍(數集A)叫做這個函數的 ,所有函數值的集合 叫做這個函數的 ,函數y=f(x) 也經常寫為 。
3、因為函數的值域被 完全確定,所以確定一個函數只需要
。
4、依函數定義,要檢驗兩個給定的變量之間是否存在函數關系,只要檢驗:
① ;② 。
5、設a, b是兩個實數,且a
(1)滿足不等式 的實數x的集合叫做閉區間,記作 。
(2)滿足不等式a
(3)滿足不等式 或 的實數x的集合叫做半開半閉區間,分別表示為 ;
分別滿足x≥a,x>a,x≤a,x
其中實數a, b表示區間的兩端點。
完成課本P33,練習A 1、2;練習B 1、2、3。
例題解析
題型一:函數的概念
例1:下圖中可表示函數y=f(x)的圖像的只可能是( )
練習:設M={x| },N={y| },給出下列四個圖像,其中能表示從集合M到集合N的函數關系的有____個。
題型二:相同函數的判斷問題
例2:已知下列四組函數:① 與y=1 ② 與y=x ③ 與
④ 與 其中表示同一函數的是( )
A. ② ③ B. ② ④ C. ① ④ D. ④
練習:已知下列四組函數,表示同一函數的是( )
A. 和 B. 和
C. 和 D. 和
題型三:函數的定義域和值域問題
例3:求函數f(x)= 的定義域
練習:課本P33練習A組 4.
例4:求函數 , ,在0,1,2處的函數值和值域。
當堂檢測
1、下列各組函數中,表示同一個函數的是( A )
A、 B、
C、 D、
2、已知函數 滿足f(1)=f(2)=0,則f(-1)的值是( C )
A、5 B、-5 C、6 D、-6
3、給出下列四個命題:
① 函數就是兩個數集之間的對應關系;
② 若函數的定義域只含有一個元素,則值域也只含有一個元素;
③ 因為 的函數值不隨 的變化而變化,所以 不是函數;
④ 定義域和對應關系確定后,函數的值域也就確定了.
其中正確的有( B )
A. 1 個 B. 2 個 C. 3個 D. 4 個
4、下列函數完全相同的是 ( D )
A. , B. ,
C. , D. ,
5、在下列四個圖形中,不能表示函數的圖象的是 ( B )
6、設 ,則 等于 ( D )
A. B. C. 1 D.0
7、已知函數 ,求 的值.( )
高一數學教案9
一、教材分析
1.教學內容
本節課內容教材共分兩課時進行,這是第一課時,該課時主要學習函數的單調性的的概念,依據函數圖象判斷函數的單調性和應用定義證明函數的單調性。
2.教材的地位和作用
函數單調性是高中數學中相當重要的.一個基礎知識點,是研究和討論初等函數有關性質的基礎。掌握本節內容不僅為今后的函數學習打下理論基礎,還有利于培養學生的抽象思維能力,及分析問題和解決問題的能力。
3.教材的重點﹑難點﹑關鍵
教學重點:函數單調性的概念和判斷某些函數單調性的方法。明確單調性是一個局部概念.
教學難點:領會函數單調性的實質與應用,明確單調性是一個局部的概念。
教學關鍵:從學生的學習心理和認知結構出發,講清楚概念的形成過程.
4.學情分析
高一學生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發展,但學生思維不成熟、不嚴密、意志力薄弱,故而整個教學環節總是創設恰當的問題情境,引導學生積極思考,培養他們的邏輯思維能力。從學生的認知結構來看,他們只能根據函數的圖象觀察出“隨著自變量的增大函數值增大”等變化趨勢,所以在教學中要充分利用好函數圖象的直觀性,發揮好多媒體教學的優勢;由于學生在概念的掌握上缺少系統性、嚴謹性,在教學中注意加強.
二、目標分析
(一)知識目標:
1.知識目標:理解函數單調性的概念,掌握判斷一些簡單函數的單調性的方法;了解函數單調區間的概念,并能根據函數圖象說出函數的單調區間。
2.能力目標:通過證明函數的單調性的學習,使學生體驗和理解從特殊到一般的數學歸納推理思維方式,培養學生的觀察能力,分析歸納能力,領會數學的歸納轉化的思想方法,增加學生的知識聯系,增強學生對知識的主動構建的能力。
3.情感目標:讓學生積極參與觀察、分析、探索等課堂教學的雙邊活動,在掌握知識的過程中體會成功的喜悅,以此激發求知欲望。領會用運動變化的觀點去觀察分析事物的方法。通過滲透數形結合的數學思想,對學生進行辨證唯物主義的思想教育。
(二)過程與方法
培養學生嚴密的邏輯思維能力以及用運動變化、數形結合、分類討論的方法去分析和處理問題,以提高學生的思維品質,通過函數的單調性的學習,掌握自變量和因變量的關系。通過多媒體手段激發學生學習興趣,培養學生發現問題、分析問題和解題的邏輯推理能力。
三、教法與學法
1.教學方法
在教學中,要注重展開探索過程,充分利用好函數圖象的直觀性、發揮多媒體教學的優勢。本節課采用問答式教學法、探究式教學法進行教學,教師在課堂中只起著主導作用,讓學生在教師的提問中自覺的發現新知,探究新知,并且加入激勵性的語言以提高學生的積極性,提高學生參與知識形成的全過程。
2.學習方法
自我探索、自我思考總結、歸納,自我感悟,合作交流,成為本節課學生學習的主要方式。
四、過程分析
本節課的教學過程包括:問題情景,函數單調性的定義引入,增函數、減函數的定義,例題分析與鞏固練習,回顧總結和課外作業六個板塊。這里分別就其過程和設計意圖作一一分析。
(一)問題情景:
為了激發學生的學習興趣,本節課借助多媒體設計了多個生活背景問題,并就圖表和圖象所提供的信息,提出一系列問題和學生交流,激發學生的學習興趣和求知欲望,為學習函數的單調性做好鋪墊。(祥見課件)
新課程理念認為:情境應貫穿課堂教學的始終。本節課所創設的生活情境,讓學生親近數學,感受到數學就在他們的周圍,強化學生的感性認識,從而達到學生對數學的理解。讓學生在課堂的一開始就感受到數學就在我們身邊,讓學生學會用數學的眼光去關注生活。
(二)函數單調性的定義引入
1.幾何畫板動畫演示,請學生認真觀察,并回答問題:通過學生已學過的函數y=2x+4,的圖象的動態形式形象出x、y間的變化關系,使學生對函數單調性有感性認識。,進行比較,分析其變化趨勢。并探討、回答以下問題:
問題1、觀察下列函數圖象,從左向右看圖象的變化趨勢?
問題2:你能明確說出“圖象呈上升趨勢”的意思嗎?
通過學生的交流、探討、總結,得到單調性的“通俗定義”:
從在某一區間內當x的值增大時,函數值y也增大,到圖象在該區間內呈上升趨勢再到如何用x與f(x)來描述上升的圖象?
通過問題逐步向抽象的定義靠攏,將圖形語言轉化為數學符號語言。幾何畫板的靈活使用,數形有機結合,引導學生從圖形語言到數學符號語言的翻譯變得輕松。
設計意圖:通過學生熟悉的知識引入新課題,有利于激發學生的學習興趣和學習熱情,同時也可以培養學生觀察、猜想、歸納的思維能力和創新意識,增強學生自主學習、獨立思考,由學會向會學的轉化,形成良好的思維品質。通過學生已學過的一次y=2x+4,的圖象的動態形式形象地反映出x、y間的變化關系,使學生對函數單調性有感性認識。從學生的原有認知結構入手,探討單調性的概念,符合“最近發展區的理論”要求。從圖形、直觀認識入手,研究單調性的概念,其本身就是研究、學習數學的一種方法,符合新課程的理念。
(三)增函數、減函數的定義
在前面的基礎上,讓學生討論歸納:如何使用數學語言來準確描述函數的單調性?在學生回答的基礎上,給出增函數的概念,同時要求學生討論概念中的關鍵詞和注意點。
定義中的“當x1x2時,都有f(x1)
注意:(1)函數的單調性也叫函數的增減性;
(2)注意區間上所取兩點x1,x2的任意性;
(3)函數的單調性是對某個區間而言的,它是一個局部概念。
讓學生自已嘗試寫出減函數概念,由兩名學生板演。提出單調區間的概念。
設計意圖:通過給出函數單調性的嚴格定義,目的是為了讓學生更準確地把握概念,理解函數的單調性其實也叫做函數的增減性,它是對某個區間而言的,它是一個局部概念,同時明確判定函數在某個區間上的單調性的一般步驟。這樣處理,同時也是讓學生感悟、體驗學習數學感念的方法,提高其個性品質。
(四)例題分析
在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。
2.例2.證明函數在區間(-∞,+∞)上是減函數。
在本題的解決過程中,要求學生對照定義進行分析,明確本題要解決什么?定義要求是什么?怎樣去思考?通過自己的解決,總結證明單調性問題的一般方法。
變式一:函數f(x)=-3x+b在R上是減函數嗎?為什么?
變式二:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來判斷。
變式三:函數f(x)=kx+b(k<0)在R上是減函數嗎?你能用幾種方法來判斷。
錯誤:實質上并沒有證明,而是使用了所要證明的結論
例題設計意圖:在理解概念的基礎上,讓學生總結判別函數單調性的方法:圖象法和定義法。例1是教材中例題,它的解決強化學生應用數形結合的思想方法解題的意識,進一步加深對概念的理解,同時也是依托具體問題,對單調區間這一概念的再認識;要了解函數在某一區間上是否具有單調性,從圖上進行觀察是一種常用而又粗略的方法。嚴格地說,它需要根據單調函數的定義進行證明。例2是教材練習題改編,通過師生共同總結,得出使用定義證明的一般步驟:任取—作差(變形)—定號—下結論,通過例2的解決是學生初步掌握運用概念進行簡單論證的基本方法,強化證題的規范性訓練,從而提高學生的推理論證能力。例3是教材例2抽象出的數學問題。目的是進一步強化解題的規范性,提高邏輯推理能力,同時讓學生學會一些常見的變形方法。
(五)鞏固與探究
1.教材p36練習2,3
2.探究:二次函數的單調性有什么規律?
(幾何畫板演示,學生探究)本問題作為機動題。時間不允許時,就為課后思考題。
設計意圖:通過觀察圖象,對函數是否具有某種性質作出一種猜想,然后通過推理的辦法,證明這種猜想的正確性,是發現和解決問題的一種常用數學方法。
通過課堂練習加深學生對概念的理解,進一步熟悉證明或判斷函數單調性的方法和步驟,達到鞏固,消化新知的目的。同時強化解題步驟,形成并提高解題能力。對練習的思考,讓學生學會反思、學會總結。
(六)回顧總結
通過師生互動,回顧本節課的概念、方法。本節課我們學習了函數單調性的知識,同學們要切記:單調性是對某個區間而言的,同時在理解定義的基礎上,要掌握證明函數單調性的方法步驟,正確進行判斷和證明。
設計意圖:通過小結突出本節課的重點,并讓學生對所學知識的結構有一個清晰的認識,學會一些解決問題的思想與方法,體會數學的和諧美。
(七)課外作業
1.教材p43習題1.3A組1(單調區間),2(證明單調性);
2.判斷并證明函數在上的單調性。
3.數學日記:談談你本節課中的收獲或者困惑,整理你認為本節課中的最重要的知識和方法。
設計意圖:通過作業1、2進一步鞏固本節課所學的增、減函數的概念,強化基本技能訓練和解題規范化的訓練,并且以此作為學生對本結內容各項目標落實的評價。新課標要求:不同的學生學習不同的數學,在數學上獲得不同的發展。作業3這種新型的作業形式是其很好的體現。
(七)板書設計(見ppt)
五、評價分析
有效的概念教學是建立在學生已有知識結構基礎上,因此在教學設計過程中注意了:第一.教要按照學的法子來教;第二在學生已有知識結構和新概念間尋找“最近發展區”;第三.強化了重探究、重交流、重過程的課改理念。讓學生經歷“創設情境——探究概念——注重反思——拓展應用——歸納總結”的活動過程,體驗了參與數學知識的發生、發展過程,培養“用數學”的意識和能力,成為積極主動的建構者。
本節課圍繞教學重點,針對教學目標,以多媒體技術為依托,展現知識的發生和形成過程,使學生始終處于問題探索研究狀態之中,激情引趣,并注重數學科學研究方法的學習,是順應新課改要求的,是研究性教學的一次有益嘗試。
高一數學教案10
1、教材(教學內容)
本課時主要研究任意角三角函數的定義。三角函數是一類重要的基本初等函數,是描述周期性現象的重要數學模型,本課時的內容具有承前啟后的重要作用:承前是因為可以用函數的定義來抽象和規范三角函數的定義,同時也可以類比研究函數的模式和方法來研究三角函數;啟后是指定義了三角函數之后,就可以進一步研究三角函數的性質及圖象特征,并體會三角函數在解決具有周期性變化規律問題中的作用,從而更深入地領會數學在其它領域中的重要應用、
2、設計理念
本堂課采用“問題解決”教學模式,在課堂上既充分發揮學生的主體作用,又體現了教師的引導作用。整堂課先通過問題引導學生梳理已有的知識結構,展開合理的聯想,提出整堂課要解決的中心問題:圓周運動等具周期性規律運動可以建立函數模型來刻畫嗎?從而引導學生帶著問題閱讀和鉆研教材,引發認知沖突,再通過問題引導學生改造或重構已有的認知結構,并運用類比方法,形成“任意角三角函數的定義”這一新的概念,最后通過例題與練習,將任意角三角函數的定義,內化為學生新的認識結構,從而達成教學目標、
3、教學目標
知識與技能目標:形成并掌握任意角三角函數的定義,并學會運用這一定義,解決相關問題、
過程與方法目標:體會數學建模思想、類比思想和化歸思想在數學新概念形成中的重要作用、
情感態度與價值觀目標:引導學生學會閱讀數學教材,學會發現和欣賞數學的理性之美、
4、重點難點
重點:任意角三角函數的定義、
難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透、
5、學情分析
學生已有的認知結構:函數的概念、平面直角坐標系的概念、任意角和弧度制的相關概念、以直角三角形為載體的銳角三角函數的概念、在教學過程中,需要先將學生的以直角三角形為載體的銳角三角函數的概念改造為以象限角為載體的銳角三角函數,并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數的概念,再拓展到任意角的三角函數的定義,從而使學生形成新的認知結構、
6、教法分析
“問題解決”教學法,是以問題為主線,引導和驅動學生的思維和學習活動,并通過問題,引導學生的質疑和討論,充分展示學生的思維過程,最后在解決問題的過程中形成新的認知結構、這種教學模式能較好地體現課堂上老師的主導作用,也能充分發揮課堂上學生的主體作用、
7、學法分析
本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標、
8、教學設計(過程)
一、引入
問題1:我們已經學過了任意角和弧度制,你對“角”這一概念印象最深的是什么?
問題2:研究“任意角”這一概念時,我們引進了平面直角坐標系,對平面直角坐標系,令你印象最深刻的是什么?
問題3:當角clipXimage002的終邊在繞頂點O轉動時,終邊上的一個點P(x,y)必定隨著終邊繞頂點O作圓周運動,在這圓周運動中,有哪些數量?圓周運動的這些量之間的關系能用一個函數模型來刻畫嗎?
二、原有認知結構的改造和重構
問題4:當角clipXimage002[1]是銳角時,clipXimage004,線段OP的長度clipXimage006這幾個量之間有何關系?
學生回答,分析結論,指出這種關系就是我們在初中學習過的銳角三角函數
學生閱讀教材,并思考:
問題5:銳角三角函數是我們高中意義上的函數嗎?如何利用函數的定義來理解它?
學生討論并回答
三、新概念的形成
問題6:如果我們將角度推廣到任意角,我們能得到任意角的三角函數的定義嗎?
學生回答,并閱讀教材,得到任意角三角函數的定義、并思考:
問題7:任意角三角函數的定義符合我們高中所學的函數定義嗎?
展示任意角三角函數的定義,并指出它是如何刻劃圓周運動的
并類比函數的研究方法,得出任意角三角函數的定義域和值域。
四、概念的運用
1、基礎練習
①口算clipXimage008的值、
②分別求clipXimage010的值
小結:ⅰ)畫終邊,求終邊與單位圓交點的坐標,算比值
ⅱ)誘導公式(一)
③若clipXimage012,試寫出角clipXimage002[2]的值。
④若clipXimage015,不求值,試判斷clipXimage017的符號
⑤若clipXimage019,則clipXimage021為第象限的角、
例1、已知角clipXimage002[3]的終邊過點clipXimage024,求clipXimage026之值
若P點的坐標變為clipXimage028,求clipXimage030的值
小結:任意角三角函數的等價定義(終邊定義法)
例2、一物體A從點clipXimage032出發,在單位圓上沿逆時針方向作勻速圓周運動,若經過的弧長為clipXimage034,試用clipXimage034[1]表示物體A所在位置的坐標。若該物體作圓周運動的圓的半徑變為clipXimage006[1],如何用clipXimage034[2]來表示物體A所在位置的坐標?
小結:可以采用三角函數模型來刻畫圓周運動
五、拓展探究
問題8:當角clipXimage002[4]的終邊繞頂點O作圓周運動時,角clipXimage002[5]的終邊與單位圓的交點clipXimage039的坐標clipXimage041clipXimage043與角clipXimage002[6]之間還可以建立其它函數模型嗎?
思考:引入平面直角坐標系后,我們可以把圓周運動用數來刻畫,這是將“形”轉化成為“數”;角clipXimage002[7]正弦值是一個數,你能借助平面直角坐標系和單位圓,用“形”來表示這個“數”嗎?角clipXimage002[8]余弦值、正切值呢?
六、課堂小結
問題9:請你談談本節課的收獲有哪些?
七、課后作業
教材P21第6、7、8題
高一數學教案11
[教學重、難點]
認識直角三角形、銳角三角形、鈍角三角形、等腰三角形和等邊三角形,體會每一類三角形的特點。
[教學準備]
學生、老師剪下附頁2中的圖2。
[教學過程]
一、畫一畫,說一說
1、學生各自借助三角板或直尺分別畫一個銳角、直角、鈍角。
2、教師巡查練習情況。
3、學生展示練習,說一說為什么是銳角、直角、鈍角?
二、分一分
1、小組活動;把附頁2中的圖2中的三角形進行分類,動手前先觀察這些三角形的特點,然后小組討論怎樣分?
2、匯報:分類的標準和方法。可以按角來分,可以按邊來分。
二、按角分類:
1、觀察第一類三角形有什么共同的特點,從而歸納出三個角都是銳角的'三角形是銳角三角形。
2、觀察第二類三角形有什么共同的特點,從而歸納出有一個角是直角的三角形是直角三角形
3、觀察第三類三角形有什么共同的特點,從而歸納出有一個角是鈍角的三角形是鈍角三角形。
三、按邊分類:
1、觀察這類三角形的邊有什么共同的特點,引導學生發現每個三角形中都有兩條邊相等,這樣的三角形叫等腰三角形,并介紹各部分的名稱。
2、引導學生發現有的三角形三條邊都相等,這樣的三角形是等邊三角形。討論等邊三角形是等腰三角形嗎?
四、填一填:
24、25頁讓學生辨認各種三角形。
五、練一練:
第1題:通過“猜三角形游戲”讓學生體會到看到一個銳角,不能決定是一個銳角三角形,必須三個角都是銳角才是銳角三角形。
第2題:在點子圖上畫三角形第3題:剪一剪。
六、完成26頁實踐活動。
高一數學教案12
教學目標:
(1)了解集合的表示方法;
(2)能正確選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;
教學重點:掌握集合的表示方法;
教學難點:選擇恰當的表示方法;
教學過程:
一、復習回顧:
1.集合和元素的定義;元素的三個特性;元素與集合的關系;常用的數集及表示。
2.集合{1,2}、{(1,2)}、{(2,1)}、{2,1}的元素分別是什么?有何關系
二、新課教學
(一).集合的表示方法
我們可以用自然語言和圖形語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。
(1) 列舉法:把集合中的元素一一列舉出來,并用花括號“ ”括起來表示集合的方法叫列舉法。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
說明:1.集合中的元素具有無序性,所以用列舉法表示集合時不必考
慮元素的順序。
2.各個元素之間要用逗號隔開;
3.元素不能重復;
4.集合中的元素可以數,點,代數式等;
5.對于含有較多元素的集合,用列舉法表示時,必須把元素間的規律顯示清楚后方能用省略號,象自然數集N用列舉法表示為
例1.(課本例1)用列舉法表示下列集合:
(1)小于10的所有自然數組成的集合;
(2)方程x2=x的所有實數根組成的集合;
(3)由1到20以內的所有質數組成的集合;
(4)方程組 的解組成的集合。
思考2:(課本P4的思考題)得出描述法的定義:
(2)描述法:把集合中的元素的公共屬性描述出來,寫在花括號{ }內。
具體方法:在花括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。
一般格式:
如:{x|x-3>2},{(x,y)|y=x2+1},{x|直角三角形},…;
說明:
1.課本P5最后一段話;
2.描述法表示集合應注意集合的代表元素,如{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}是不同的兩個集合,只要不引起誤解,集合的代表元素也可省略,例如:{x|整數},即代表整數集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。
例2.(課本例2)試分別用列舉法和描述法表示下列集合:
(1)方程x2—2=0的所有實數根組成的集合;
(2)由大于10小于20的所有整數組成的集合;
(3)方程組 的解。
思考3:(課本P6思考)
說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。
(二).課堂練習:
1.課本P6練習2;
2.用適當的方法表示集合:大于0的所有奇數
3.集合A={x| ∈Z,x∈N},則它的元素是 。
4.已知集合A={x|-3
歸納小結:
本節課從實例入手,介紹了集合的常用表示方法,包括列舉法、描述法。
作業布置:
1. 習題1.1,第3.4題;
2. 課后預習集合間的基本關系.
高一數學教案13
教學目標
1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
教學重難點
1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
教學過程
一、知識歸納
1、應用正弦余弦定理解斜三角形應用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗;
2、實際問題中的有關術語、名稱:
(1)仰角與俯角:均是指視線與水平線所成的角;
(2)方位角:是指從正北方向順時針轉到目標方向線的夾角;
(3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實際問題的常見題型有:
測量距離、測量高度、測量角度、計算面積、航海問題、物理問題等;
二、例題討論
一)利用方向角構造三角形
四)測量角度問題
例4、在一個特定時段內,以點E為中心的7海里以內海域被設為警戒水域.點E正北55海里處有一個雷達觀測站A.某時刻測得一艘勻速直線行駛的船只位于點A北偏東。
高一數學教案14
【教學目標與解析】
1、教學目標
(1)理解函數的概念;
(2)了解區間的概念;
2、目標解析
(1)理解函數的概念就是指能用集合與對應的語言刻畫函數,體會對應關系在刻畫函數概念中的作用;
(2)了解區間的概念就是指能夠體會用區間表示數集的意義和作用;
【問題診斷分析】在本節課的教學中,學生可能遇到的問題是函數的概念及符號的理解,產生這一問題的原因是:函數本身就是一個抽象的概念,對學生來說一個難點。要解決這一問題,就要在通過從實際問題中抽象概況函數的概念,培養學生的抽象概況能力,其中關鍵是理論聯系實際,把抽象轉化為具體。
【教學過程】
問題1:一枚炮彈發射后,經過26s落到地面擊中目標.炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時間t(單位:s)變化的規律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時間變量t之間的對應關系是否為函數?若是,其自變量是什么?
設計意圖:通過以上問題,讓學生正確理解讓學生體會用解析式或圖象刻畫兩個變量之間的依賴關系,從問題的實際意義可知,在t的變化范圍內任給一個t,按照給定的對應關系,都有的一個高度h與之對應。
問題2:分析教科書中的實例(2),引導學生看圖并啟發:在t的變化t按照給定的圖象,都有的一個臭氧層空洞面積S與之相對應。
問題3:要求學生仿照實例(1)、(2),描述實例(3)中恩格爾系數和時間的關系。
設計意圖:通過這些問題,讓學生理解得到函數的定義,培養學生的歸納、概況的能力。
問題4:上述三個實例中變量之間的關系都是函數,那么從集合與對應的觀點分析,函數還可以怎樣定義?
4.1在一個函數中,自變量x和函數值y的變化范圍都是集合,這兩個集合分別叫什么名稱?
4.2在從集合A到集合B的一個函數f:A→B中,集合A是函數的定義域,集合B是函數的值域嗎?怎樣理解f(x)=1,x∈R?
4.3一個函數由哪幾個部分組成?如果給定函數的定義域和對應關系,那么函數的值域確定嗎?兩個函數相等的條件是什么?
高一數學教案15
一、教材分析
函數作為初等數學的核心內容,貫穿于整個初等數學體系之中。函數這一章在高中數學中,起著承上啟下的作用,它是對初中函數概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數上,把函數看成變量之間的依賴關系,而高中階段不僅把函數看成變量之間的依賴關系,更是從“變量說”到“對應說”,這是對函數本質特征的進一步認識,也是學生認識上的一次飛躍。這一章內容滲透了函數的思想,集合的思想以及數學建模的思想等內容,這些內容的學習,無疑對學生今后的學習起著深刻的影響。
本節《函數的概念》是函數這一章的起始課。概念是數學的基礎,只有對概念做到深刻理解,才能正確靈活地加以應用。本課從集合間的對應來描繪函數概念,起到了上承集合,下引函數的作用。也為進一步學習函數這一章的其它內容提供了方法和依據。
二、重難點分析
根據對上述對教材的分析及新課程標準的要求,確定函數的概念既是本節課的重點,也應該是本章的難點。
三、學情分析
1、有利因素:一方面學生在初中已經學習了變量觀點下的函數定義,并具體研究了幾類最簡單的函數,對函數已經有了一定的感性認識;另一方面在本書第一章學生已經學習了集合的概念,這為學習函數的現代定義打下了基礎。
2、不利因素:函數在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應來描繪函數概念,是一個抽象過程,要求學生的抽象、分析、概括的能力比較高,學生學起來有一定的難度。
四、目標分析
1、理解函數的概念,會用函數的定義判斷函數,會求一些最基本的函數的定義域、值域。
2、通過對實際問題分析、抽象與概括,培養學生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
3、通過對函數概念形成的探究過程,培養學生發現問題,探索問題,不斷超越的創新品質。
五、教法學法
本節課的教學以學生為主體、教師是數學課堂活動的組織者、引導者和參與者,我一方面精心設計問題情景,引導學生主動探索。另一方面,依據本節為概念學習的特點,以問題的提出、問題的解決為主線,始終在學生知識的“最近發展區”設置問題,倡導學生主動參與,通過不斷探究、發現,在師生互動、生生互動中,讓學習過程成為學生心靈愉悅的主動認知過程。
學法方面,學生通過對新舊兩種函數定義的對比,在集合論的觀點下初步建構出函數的概念。在理解函數概念的基礎上,建構出函數的定義域、值域的概念,并初步掌握它們的求法。
高一必修二數學教案41、教材(教學內容)
本課時主要研究任意角三角函數的定義。三角函數是一類重要的基本初等函數,是描述周期性現象的重要數學模型,本課時的內容具有承前啟后的重要作用:承前是因為可以用函數的定義來抽象和規范三角函數的定義,同時也可以類比研究函數的模式和方法來研究三角函數;啟后是指定義了三角函數之后,就可以進一步研究三角函數的性質及圖象特征,并體會三角函數在解決具有周期性變化規律問題中的作用,從而更深入地領會數學在其它領域中的重要應用、
2、設計理念
本堂課采用“問題解決”教學模式,在課堂上既充分發揮學生的主體作用,又體現了教師的引導作用。整堂課先通過問題引導學生梳理已有的知識結構,展開合理的聯想,提出整堂課要解決的中心問題:圓周運動等具周期性規律運動可以建立函數模型來刻畫嗎?從而引導學生帶著問題閱讀和鉆研教材,引發認知沖突,再通過問題引導學生改造或重構已有的認知結構,并運用類比方法,形成“任意角三角函數的定義”這一新的概念,最后通過例題與練習,將任意角三角函數的定義,內化為學生新的認識結構,從而達成教學目標、
3、教學目標
知識與技能目標:形成并掌握任意角三角函數的定義,并學會運用這一定義,解決相關問題、
過程與方法目標:體會數學建模思想、類比思想和化歸思想在數學新概念形成中的重要作用、
情感態度與價值觀目標:引導學生學會閱讀數學教材,學會發現和欣賞數學的理性之美、
4、重點難點
重點:任意角三角函數的定義、
難點:任意角三角函數這一概念的理解(函數模型的建立)、類比與化歸思想的滲透、
5、學情分析
學生已有的認知結構:函數的概念、平面直角坐標系的概念、任意角和弧度制的相關概念、以直角三角形為載體的銳角三角函數的概念、在教學過程中,需要先將學生的以直角三角形為載體的銳角三角函數的概念改造為以象限角為載體的銳角三角函數,并形成以角的終邊與單位園的交點的坐標來表示的銳角三角函數的概念,再拓展到任意角的三角函數的定義,從而使學生形成新的認知結構、
6、教法分析
“問題解決”教學法,是以問題為主線,引導和驅動學生的思維和學習活動,并通過問題,引導學生的質疑和討論,充分展示學生的思維過程,最后在解決問題的過程中形成新的認知結構、這種教學模式能較好地體現課堂上老師的主導作用,也能充分發揮課堂上學生的主體作用、
7、學法分析
本課時先通過“閱讀”學習法,引導學生改造已有的認知結構,再通過類比學習法引導學生形成“任意角的三角函數的定義”,最后引導學生運用類比學習法,來研究三角函數一些基本性質和符號問題,從而使學生形成新的認識結構,達成教學目標。
【高一數學教案】相關文章:
高一數學教案12-21
高一數學教案06-20
高一數學教案07-20
高一必修五數學教案04-10
高一必修四數學教案04-13
人教版高一數學教案07-30
上海高一數學教案07-30
關于高一數學教案09-30
人教版高一數學教案12-23
高一數學教案設計04-10