亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

六年級數學下冊《圓錐體積》的優秀說課稿

時間:2021-01-24 11:04:57 說課稿 我要投稿

六年級數學下冊《圓錐體積》的優秀說課稿模板(通用5篇)

  作為一名老師,往往需要進行說課稿編寫工作,說課稿有助于順利而有效地開展教學活動。說課稿要怎么寫呢?以下是小編為大家收集的六年級數學下冊《圓錐體積》的優秀說課稿模板(通用5篇),歡迎大家分享。

六年級數學下冊《圓錐體積》的優秀說課稿模板(通用5篇)

  六年級數學下冊《圓錐體積》的優秀說課稿1

  一、說教材:

  1、本節教材是義務教育小學數學(人教版)六年制第十二冊第三單元《圓柱、圓錐和球》中《圓錐體積》的第一課時。教學內容為圓錐體積計算公式的推導,例1、例2,相應的做一做及練習十二的第3、4、5題。

  2、本節教材是在學生已經掌握了圓柱體積計算及其應用和認識了圓錐的基本特征的基礎上學習的,是小學階段學習幾何知識的最后一課時內容。讓學生學好這一部分內容,有利于進一步發展學生的空間觀念,為進一步解決一些實際問題打下基礎。教材按照實驗、觀察、推導、歸納、實際應用的程序進行安排。

  3、教學重點:能正確運用圓錐體積計算公式求圓錐的體積。

  教學難點:理解圓錐體積公式的推導過程。

  4、教學目標:

  (1)知識方面:理解并掌握圓錐體積公式的推導過程,學會運用圓錐體積計算公式求圓錐的體積;

 。2)能力方面:能解決一些有關圓錐的實際問題,通過圓錐體積公式的推導實驗,增強學生的實踐操作能力和觀察比較能力;

 。3)德育方面:通過實驗,引導學生探索知識的內在聯系,滲透轉化思想,培養交流與合作的團隊精神。

  5、教具準備:等底等高的圓柱、圓錐一對,與圓柱等底不等高的圓錐一個,與圓柱等高不等底的圓錐一個。

  學具準備:讓學生分組制作等底等高的圓柱、圓錐若干對,一定量的細沙。

  二、說教法:

  著名教育家布魯納說過:教學不是把學生當成圖書館,而要培養學生參與學習的過程。學生是學習的主體,只有通過自身的實踐、比較、思索,才能更加深刻地領略到知識的真諦。因此,我在設計教法時,根據本節幾何課的特點,結合小學生的認知規律,采用以下幾種教法:

  1、實驗操作法。

  波利亞說過:學習任何知識的最佳途徑是由自己去發現,因為這種發現理解最深,也最容易掌握其中的內在規律、性質和聯系。因此,我在學生已經認識圓錐的基礎上,設計了一個實驗,通過學生動手操作,用空圓錐盛滿沙后倒入等底等高空圓柱中,發現圓錐的體積等于和它等底等高的圓柱體積的三分之一。利用實驗法,為推導出圓錐的體積公式發揮橋梁和啟智的作用,有助于發展學生的空間觀念,培養觀察能力、思維能力和動手操作能力,為進一步學習,提供了豐富的感性材料,從而逐步從具體的操作過渡到內部語言。

  2、比較法、討論法、發現法三法優化組合。

  幾何知識具有邏輯性、嚴密性、系統性的特點。因此在做實驗時,我要求學生運用比較法、討論法、發現法得出結論:圓錐的體積等于與它等底等高圓柱體積的三分之一。然后再讓學生討論假如這句話中去掉等底等高這幾個字還能否成立,并讓學生用不等底等高的空圓錐、空圓柱盛沙做實驗,發現有時裝不下,有時不夠裝,有時剛好裝滿,得出結論:不是所有的圓錐體積都是圓柱體積的三分之一,從而加深了等底等高這個重要的前提條件。

  三、說學法

  人人學有價值的數學,人人都能獲得必要的數學,不同的人在數學上得到不同的發展這是新世紀數學課程的基本理念。新課程標準還強調引導學生主動參與、親自實踐、獨立思考、合作探究,改變單一的記憶、接受、模仿的被動學習方式。因此我在講求教法的同時,更重視對學生學法的指導。

  1、實驗轉化法。

  有些知識單憑解說是無法讓學生真正理解的,只有通過實驗,反復操作,才能深刻領悟其中的內在奧秘。在指導學生進行實驗操作時,我著重從三個方面進行引導:首先,讓學生做好操作的準備,也就是各自準備好等底等高的圓柱、圓錐一對,一定量的沙;其次,告訴他們操作的方法步驟和注意點;第三,引導學生在操作中比較、發現、總結。這樣通過實驗操作推導得出圓錐的體積公式,培養了學生觀察比較、交流合作、概括歸納等能力。

  2、嘗試練習法。

  蘇霍姆林斯基認為:成功的歡樂是一種巨大的情緒力量,它可以促進兒童好好學習的愿望。本節課在教學兩道例題時,讓學生嘗試自己獨立解答,挖掘學生的潛能,讓他們體驗學習成功的樂趣,調動學生學習的積極性和主動性,發揮學生的主體作用,養成良好的學習習慣。

  四、說教學程序:

  本節課我設計了以下五個教學程序:

  1、復習舊知,做好鋪墊。

 。1)看圖說出圓錐的底面和高。

 。2)一個圓柱體零件,底面積是6。28平方厘米,高是3厘米,它的體積是多少?

  這兩道題是復習圓錐的認識和圓柱的體積公式及其應用,為新知遷移做好鋪墊。

  2、談話激趣,導入新課。

  六年級下冊《圓錐體積》說課稿(1)我們已經認識了圓錐,掌握了圓柱體積公式及其應用,這節課,我們一起來學習圓錐的體積。(板書課題)

  (2)看到這個課題你們想學習一些什么?

 。3)教師總結,出示學習目標。

  這個環節讓學生自己說出要學的目標,發揮了學生的主體作用,創設了和諧平等的課堂教學氛圍。

  3、實驗操作,探究新知。

  本環節教學是本節幾何課成敗的關鍵。為了使學生成為學習的主人,在這個環節中,我盡量給學生有對象可說,有東西可做,有問題可想,有步驟可循,讓學生都能主動地操作、觀察、比較、分析和歸納。

 。1)回憶圓柱體積計算公式推導方法。

  (2)動手操作,探究圓錐體積計算的公式。

  在實驗時,我提出了四個問題,讓學生帶著問題進行操作:

 、俦纫槐,量一量,圓柱和圓錐的底和高之間有什么關系?

  ②用空圓錐裝滿沙,倒進空圓柱中,可以倒幾次?每次結果怎樣?

 、弁ㄟ^實驗你發現了什么?

 、苣隳苡脤嶒炚f明圓錐的體積不一定是圓柱體積的三分之一嗎?

 。3)學生匯報實驗結果。

  (4)教師歸納公式,學生記憶公式。(板書結論和公式)

 。5)小結,剛才我們用了實驗發現歸納的方法推導出了圓錐的體積公式。

  這個環節,讓學生動手操作,分析比較,歸納總結,使課堂真正活了起來;最后總結了學法,可以讓學生舉一反三,觸類旁通。

  4、嘗試練習,鞏固提高。

  (1)同時出示例1和例2。

  例1:一個圓錐形的零件,底面積是19平方厘米。高是12厘米。這個零件的體積是多少?

  例2:在打谷場上,有一個近似于圓錐形的小麥堆,測得底面直徑是4米,高是1。2米。每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數保留整千克)

  ①師出示例題,指名讀題,說出已知條件和所求問題;

 、诜治觯豪}1直接告訴底面積和高,根據公式可以直接求出來;例題2要求小麥的重量,必須先求什么?

 、壑该逖荨

  ③集體訂正,指出計算圓錐體積時,一定不要忘了乘1/3。

  (2)鞏固練習,形成技能,完成做一做。

  這個環節充分放手讓學生自己嘗試練習,可以挖掘學生的潛能,讓學生體驗成功的樂趣。

  5、看書質疑,布置作業。

  ①通過這節課的學習,你學到了什么知識?你用了什么方法學到這些新知識的?還有什么疑問的嗎?

  看書總結和質疑問難,是一堂課的重要環節。每一節成功的課,都應該留有足夠的時間讓學生去質疑問難,從而實現課內向課外的延伸。

 、诓贾谜n堂作業:練習十二的第3、4、5題。

  六年級數學下冊《圓錐體積》的優秀說課稿2

  一、說教材

  (一)圓錐是小學幾何初步知識的最后一個教學單元中的內容,是學生在學習了平面圖形和長方體、正方體、圓柱體這三種立體圖形的基礎上進行研究的含有曲面圍成的最基本的立體圖形。由研究長方體、正方體和圓柱體的體積擴展到研究圓錐的體積,這是發展學生空間觀念的內容。

  內容包括理解圓錐體積的計算公式和圓錐體積計算公式的具體運用。學生掌握這些內容,不僅有利于全面掌握長方體、正方體、圓柱體和圓錐之間的本質聯系、提高幾何體知識掌握水平,為學習初中幾何打下基礎,同時提高了運用所學的數學知識和方法解決一些簡單實際問題的能力。

  (二)教學目標

  1、通過實驗,使學生理解和掌握圓錐體積公式,能運用公式正確地計算圓錐的體積2、培養學生的觀察、操作能力和初步的空間觀念,培養學生應用所學知識解決實際問題的能力。

  3、滲透事物間相互聯系的辯證唯物主義觀點的啟蒙教育。

  (三)教學重點、難點和關鍵

  重點:理解和掌握圓錐體積的計算公式。

  難點:理解圓柱和圓錐等底等高時體積間的倍數關系。

  關鍵:組織學生動手做實驗,引導學生動腦、動手推導出圓錐體積的計算公式。

  二、說教法

  以談話法、實驗法為主,討論法、讀書指導法、練習法為輔,實現教學目標。教學中,既充分發揮學生的主體作用,調動學生積極主動地參與教學的全過程。

  小學階段學習的幾何知識是直觀幾何。小學生學習幾何知識不是嚴格的論證,而主要是通過觀察、操作。根據課題的特點,主要采取讓學生做實驗的方法主動獲取知識。主要引導學生做了三個實驗。一是比較圓柱和圓錐是等底等高,強調圓柱和圓錐是等底等高這個必要條件;二是做在圓錐中倒的實驗,使學生理解等底等高的圓柱和圓錐存在著一定的倍數關系;三是做在小圓錐里裝滿沙土往大圓柱中倒的實驗,再次強調只有等底等高的圓柱和圓錐存在著的倍數關系,搞清了圓錐體積公式的由來,從而理解和掌握了圓錐體積公式,培養了學生的觀察、操作能力和初步的空間觀念,克服了幾何形體計算公式教學中的重結論、輕過程,重記憶、輕理解,重知識、輕能力的弊病。突出了教學重點。

  三、說學法

  1、教學中充分發揮學生的主體作用。學生能做的盡量讓學生自己做,學生能想的盡量讓學生自己想,學生不能想的,教師啟發、引導學生想,學生能說的盡量讓學生自己說。學生的整個學習過程圍繞著教師創設的問題情境之中。

  2、學生學習圓錐體積公式的推導時,通過自己操作實驗、觀察比較、討論小結、推導出圓錐的計算公式,從而初步學會運用實驗的方法探索新知識。

  四、說教學程序

  (一)導入課題

  1、讓學生自己找出自己桌子上的圓柱體,指出它的底面和高。

  回答:(1)已知底面積和高怎樣求它的體積?(2)已知底面半徑、直徑或周長又怎樣求它的體積?

  這樣,學生可以利用遷移規律,從求圓柱體積的思路、方法中得到啟示,領悟出求圓錐體積的方法。

  2、讓學生自己找出圓錐體,指出它的底面和高,同時引出課題:圓錐的體積

  (二)講授新知

  1、(1)引入新課

  引導學生回憶圓柱的體積計算公式是怎樣推導的?想:圓錐的體積也能轉化成學過的體積來計算嗎?轉化成哪種形體最合適?

  (2)教學圓錐體積公式

  首先,學生帶著如下三個問題自學課文,(電腦出示):(1)用什么方法可以得到計算圓錐體積的公式?(2)圓柱和圓錐等底等高是什么意思?(3)得出了什么結論?圓錐體積的計算公式是什么?

  其次,學生操作實驗,先讓學生比較圓柱和圓錐是等底等高。再讓學生做在圓錐中裝滿沙土往等底等高的圓柱中倒和在圓柱中裝滿沙土往等底等高的圓錐中倒的實驗,得出倒三次正好倒滿。使學生理解等底等高的圓柱和圓錐,圓錐的體積是圓柱體積的1/3,圓柱的體積是圓錐的3倍。

  第三、小組討論,全班交流,歸納,推導出圓錐體積的計算公式:V= 1/3Sh。

  第四、讓學生做在小圓錐里裝滿沙土往大圓柱中倒的實驗,得出倒三次不能倒滿。再次強調,只有等底等高的圓柱和圓錐才存在著一定的倍數關系。

  第五、師生小結:圓錐的體積等于和它等底等高的圓柱體積的三分之一。

  練習:

  填空:(口答)(電腦出示)等底等高的圓柱和圓錐,圓錐的體積是15立方厘米,圓柱的體積是( )立方厘米,如果圓柱的體積是a立方厘米,圓錐的體積是( )立方厘米。

  2、教學應用體積公式計算體積(電腦出示題目)

  提高學習效率,掌握學習方法才能取得好的成績,六年級數學下冊說課稿的針對性很強,希望同學和老師都能夠合理的使用!

  六年級數學下冊《圓錐體積》的優秀說課稿3

  一、教材分析

  本節課是北師大版數學教材六年級下冊第一單元第11~12頁的內容——圓錐的體積。

  這部分內容是發展學生空間觀念的內容,也是小學階段幾何初步知識的最后一個內容,是學生在了解和理解了體積和容積的含義基礎上,進一步了解圓錐體積或容積;在研究了圓柱體積計算方法的基礎上,教材繼續滲透類比的思想,再次引導學生經歷“類比猜想——驗證說明”的過程,進行圓錐體積計算方法的探索。內容包括了解圓錐體積或容積,理解圓錐體積的計算公式和圓錐體積計算公式的具體運用。

  二、學生情況

  學生已經直觀認識了長方體、正方體,掌握了長方體、正方體體積的'計算方法,在前面的課時中也已經經歷了“類比猜想——驗證說明”的探索過程,通過已有的長方體、正方體體積計算方法,學習了圓柱的體積計算方法,在此基礎上,讓學生再次經歷類比探索去學習圓錐體積計算方法。但長方體、正方體和圓柱都是直柱體,類比和猜想圓柱體積計算方法對學生來說比較容易,但是圓錐不是直柱體,因此在探索活動中,需要引導學生提出合理的猜想。學生對這部分內容的掌握,不僅有利于掌握立體圖形之間的本質聯系,提高幾何體知識掌握水平,同時也利于提高運用所學數學知識和方法解決一些簡單實際問題的能力。

  三、教學目標

  根據新課標的具體要求,和本節課的教學內容,結合學生實際制定了以下教學目標。

  知識目標:

  1、結合具體情境和實踐活動,了解圓錐的體積或容積的含義,進一步體會物體體積和容積的含義。

  2、經歷圓錐體積計算公式的推導過程,理解并掌握圓錐體積的計算公式,能正確計算圓錐體積。

  3、能運用圓錐體積的計算方法,解決有關實際問題。

  能力目標:

  培養學生的觀察、操作能力,進一步豐富對空間的認識,建立空間觀念,發展學生的形象思維,增強學生的應用意識。

  情感目標:

  能積極參加實驗活動,培養學生探索的精神和小組合作的意識。

  四、教學重、難點

  重點:圓錐體積的計算。

  難點:理解圓錐體積與圓柱體積的關系。

  關鍵:經歷“小實驗”活動,在活動中發現規律。

  五、教法、學法

  本節課,在教法和學法上力求體現以下兩方面:

  1、以講解法、教具操作法、實驗法為主,實現教學目標,在教學中,即充分發揮學生的主體作用,調動學生積極主動地參與教學全過程。

  2、教學充分發揮學生的主體作用。通過自己操作實驗、觀察比較、討論小結,發現圓柱與圓錐的體積關系,從而推導出圓錐的體積計算公式。

  六、教具準備

  等底等高的圓柱體和圓錐體容器,不等底等高的圓柱和圓錐。

  七、教學環節

  環節一復習鋪墊

  回憶并應用圓柱體積計算公式。通過練習鞏固對圓柱體積計算公式的認識,為下面學習圓錐體積計算公式作好鋪墊。

  環節二探索新知

  首先出示教材中的情境圖,并提出問題:求這堆小麥的體積,實際上就是求什么?引導學生結合情境來進一步體會圓錐體積的含義。接著直接揭示課題——研究圓錐體積計算方法。

  探索圓錐體積計算方法。分為以下幾個步驟完成。

  步驟一:引導學生回憶圓柱體積計算方法的推導,這樣,學生可以利用類比遷移規律,從求圓柱體積的思路、方法中得到啟示。然后讓學生思考:圓錐的體積也能轉化成學過的體積來計算嗎?轉化成哪種形體最合適?學生很容易根據圓柱和圓錐的底面都是園,來聯想到轉化成圓柱。

  步驟二:放手讓學生大膽的猜想如何計算圓錐的體積。學生很容易想到如果是用底面積乘高,計算出來的是圓柱的體積,而直覺會讓他們想到圓錐的體積應該比圓柱體積小,但這個時候他們并沒有意識到“等底等高”。讓學生繼續猜想應該是圓柱的幾分之幾,并說明猜想的依據。在猜想過程中,學生可能得出的結論多樣,這個時候針對不同的結論,如:圓錐體積是圓柱體積的二分之一;圓錐體積是圓柱體積的三分之一等。教師隨即出示幾個大小不同,且不等底等高的圓柱和圓錐讓學生仔細觀察,比如:大圓錐和小圓柱,或者底面積(高)相同,但是高(底面積)不相同的圓柱和圓錐。通過觀察讓學生發現高和底面積如果不相同,不能找到與圓錐的關系,因此只有圓柱和圓錐等底等高才便于我們研究。

  步驟三:實驗活動。在學生形成猜想后,再引導學生“驗證說明”自己的猜想。展開分組活動,讓學生參與操作實驗,用一個空心的圓錐裝滿水或沙子倒入等底等高的圓柱容器中,看幾次能倒滿;然后再把圓柱中裝滿水或沙子倒入等底等高的圓錐容器中,需要倒幾次才能倒完,并做好觀察記錄。讓學生初步感知等底等高的圓柱和圓錐體積之間的關系。接著教師用一對等底等高的圓柱和圓錐。

  六年級數學下冊《圓錐體積》的優秀說課稿4

  一、教材分析教材通過向等底等高的圓柱和圓錐倒水的實驗,得到圓錐體積的計算公式V=1/3sh。也就是等底等高的圓錐體積是圓柱體積的三分之一。教課書43頁例1是直接利用公式求體積,例2是已知圓錐形小麥堆的底面直徑和高,求小麥的重量,這是一個簡單的實際問題,通過這個例子教學,使學生初步學會解決一與計算圓錐形物體的體積有關的實際問題。

  二、學生基本情況六年級四班,共有學生49人,其中男生20人,女生29人,以前學生對長方體、正方體等立體圖形有了初步的認識和了解,七學期對圓錐、圓柱立體圖形的特征進行了研究,通過學習,學生對圓柱,圓錐的特征有了很深刻的認識,對圓柱的體積,表面積,側面積能熟練地計算,但也有少數學生立體觀念不強,抽象思維能力差,因此學習效率差。

  三、教學方法由于本節課是立體圖形(圓錐的體積)的學習,要培養學生學習的積極性,必須通過具體教具進行教學,從而給學生建立空間觀念,培養學生的空間想象能力。

  本節課我采用具體的實驗,讓學生發現圓柱體積與它等底等高的圓錐體積的關系,從而推導出圓錐的體積公式,然后讓學生利用圓錐的體積公式,嘗試計算圓錐的體積,以達到解決一些常見的實際問題的能力。

  四、教學過程本節課一開始,用口算,口答的形式引入課題,一是培養了學生的計算能力,二是為新授課作為輔墊,為學習圓錐的體積打下基礎。

  緊接著提示課題,以實驗的方法讓學生觀察其規律,總結出圓錐的體積公式,這一環節是本節的難點,必須讓學生理解清楚,特別是對三分之一的理解。

  然后出示例題,讓學生嘗試解答例1,直接告訴底面積和高,可以直接利用公式計算,教師不必多的提示,只要學生會做就行。例2是已知圓錐形的小麥堆的底面直徑和高,要求小麥重量,實際舊就要先求體積。

  學生嘗試解答后,教師特別引導,要求體積,這個題不知道底面積,則要先求底面積,二是要讓學生討論,如果這堆小麥知道直徑和高,你能想辦法測出來嗎?這樣培養了學生空間想象力。

  最后,設計了三個鞏固練習,都是在基本求出圓錐體積的基礎上進行提高訓練,這樣即滿足了基礎知識的學習,又使優生能有所提高。

  六年級數學下冊《圓錐體積》的優秀說課稿5

  一、說教材

  圓錐是小學幾何初步知識的最后一個教學內容,是學生在學習了平面圖形和長方體、正方體、圓柱體的基礎上進行研究的含有曲面圍成的最基本的立體圖形。由研究長方體、正方體和圓柱體的體積擴展到研究圓錐的體積的。內容包括理解圓錐體積的計算公式和圓錐體積計算公式的具體運用。學生掌握這些內容,不僅有利于全面掌握長方體、正方體、圓柱和圓錐之間的本質聯系、提高幾何知識掌握水平,為學習初中幾何打下基礎,同時提高了運用所學的數學知識技能解決實際問題的能力。

  教學目標是:

  1、使學生理解圓錐體積的推導過程,初步掌握圓錐體積的計算公式,并能正確計算圓錐的體積。

  2、通過動手推導圓錐體積計算公式的過程,培養學生初步的空間觀念和動手操作能力。

  教學重點是:掌握圓錐體積的計算方法。

  教學難點是:理解圓錐體積公式的推導過程。

  二、說教法

  根據學生認知活動的規律,學生實際水平狀況,以及教學內容的特點,我在本節課以自主探究、小組合作學習方式為主,采用情境教學法,先通過情境感知并進行猜想,再通過操作驗證,從中提取數學問題,自己總結歸納出圓錐體積的計算方法,從而使學生從形象思維逐步過渡到抽象思維,進而達到感知新知、驗證新知、應用新知、鞏固和深化新知的目的,同時在課堂上多鼓勵學生,尤其注重培養學生敢于質疑的精神。

  三、說學法

  本節課學習適于學生展開觀察、猜想、操作、比較、交流、討論、歸納等教學活動,為了更好的指導學法,我采用小組合作形式組織教學。這樣,一方面可以讓學生去發現,體驗創造獲取新知,另一方面,也可以增強學生的合作意識,在活動中迸發創造性的思維火花。

  四、說教學流程

  為了更好的突出重點,突破難點,我以動手操作、觀察猜想、實驗求證、討論歸納法實現教學目標;教學中充分利用幾何的直觀,發揮學生的主體作用,調動學生積極主動地參與教學的全過程。

  1、創設情境,提出問題

  出示近似圓錐形的沙堆,接著讓學生根據情境提出他們想知道的知識,很多學生都想知道沙堆的體積有多大,從而導出課題“圓錐的體積”。讓學生自己提出問題,發現問題,激發了學生探索解決問題的強烈愿望。

  2、探索實驗,得出結論

  A、動手操作

  把一個圓柱形木料的上底削成一點,讓學生觀察削成的圓錐體與原來的圓柱體有什么關系.要求先標出上底的圓心點,不改孌下底面,注意安全。培養學生初步的空間觀念和動手操作能力。

  B、觀察猜想

  觀察、比較圓柱體與圓錐體。

  突破知識點(1)“等底等高”;讓學生猜測圓柱體積與它等底等高的圓錐體積的關系。

  突破知識點(2)圓錐體積比與它等底等高的圓柱體積小、圓錐體積是與它等底等高的圓柱體積的1/2、圓錐體積是與它等底等高的圓柱體積的1/3;設想求圓錐體積的方法,學生獨立思考后交流討論,給學生提供了聯想和交流的空間,培養了他們的創新能力。

  C、實驗求證

  學生動手實驗,小組合作探究圓錐體積的計算方法。

 。1)用天平稱圓錐體和與它等底等高的圓柱體木料的質量;

 。2)把圓錐體浸裝有水的圓柱形水槽里量、算出體積;

 。3)用裝沙或裝水的方法進行實驗。這樣的設計,由教師操作演示變學生動手實驗,充分發揮了學生的主體作用。

  通過學生演示、交流、討論,得出圓錐體積的計算公式:

  圓柱的體積等于與它等底等高的圓錐體積的3倍;

  圓錐體積等于與它等底等高的圓柱的體積的1/3.

  圓錐體積=底面積×高×1/3

  這個環節充分發揮了學生的主體作用,讓學生在設想、探索、實驗中發展動手操作能力及創新能力。

  3、應用結論,解決問題

  (1)以練習的形式出示例1。

  例1:一個圓錐形的零件,底面積是19平方厘米,高是12厘米,這個零件的體積是多少?

  通過這道練習,鞏固了所學知識。

 。2)基礎練習:求下面各圓錐的體積。

  底面面積是7.8平方米,高是1.8米。

  底面半徑是4厘米,高是21厘米。

  底面直徑是6分米,高是6分米。

  這道題是培養學生聯

  系舊知靈活計算的能力,形成系統的知識結構。

  (3)出示例2。

  在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是6米,高是1.2米,每立方米小麥約重735千克,這堆小麥大約有多少千克?

  通過這道練習,培養學生解決實際問題的能力,了解數學與生活的緊密聯系。

 。4)操作練習。

  讓學生把實驗用的沙子堆成圓錐形沙堆,合作測量計算出它的體積,這道題就地取材,給了學生一個運用所學知識解決實際問題的機會,讓他們動手動腦,提高了學習數學的興趣。

  4、全課總結,課外延伸。

  讓學生說說這節課的收獲,并在課后從生活中找一個圓錐形物體,想辦法計算出它的體積。這樣激發了學生到生活中繼續探究數學問題的興趣。

【六年級數學下冊《圓錐體積》的優秀說課稿模板(通用5篇)】相關文章:

圓錐的體積說課稿10篇11-08

有關圓錐體積教學課件09-21

圓柱的體積說課稿11-08

《圓柱的體積一》說課稿12-01

六年級下冊數學圓柱和圓錐復習資料09-01

大班數學優秀說課稿模板12-27

圓柱的體積說課稿8篇11-08

圓柱的體積說課稿(7篇)11-08

圓柱體體積說課稿01-11

六年級下冊數學思考說課稿11-04