高一數學教學計劃15篇
時光飛逝,時間在慢慢推演,我們的工作又進入新的階段,為了在工作中有更好的成長,我們要好好計劃今后的學習,制定一份計劃了。那么你真正懂得怎么寫好計劃嗎?以下是小編為大家整理的高一數學教學計劃,僅供參考,大家一起來看看吧。
高一數學教學計劃1
一.指導思想:
(1)隨著素質教育的深入展開,《新課程標準》提出了“教育要面向世界,面向未來,面向現代化”和“教育必須為社會主義現代化建設服務,必須與生產勞動相結合,培養德、智、體等方面全面發展的社會主義事業的建設者和接班人”的指導思想和課程理念和改革要點。使學生掌握從事社會主義現代化建設和進一步學習現代化科學技術所需要的數學知識和基本技能。其內容包括代數、幾何、三角的基本概念、規律和它們反映出來的思想方法,概率、統計的初步知識,計算機的使用等。
(2)培養學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力。
(3) 根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神。
(4) 使學生具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯系和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學會通過收集信息、處理數據、制作圖像、分析原因、推出結論來解決實際問題的思維方法和操作方法。
(6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養,又要滲透有關高考的思想方法,為三年的學習做好準備。
二.學情分析:
我校高一學生在數學學習上存在不少問題,這些問題主要表現在以下方面: 1、進一步學習條件不具備.高中數學與初中數學相比,知識的深度、
廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高.如二次函數在閉區間上的最值問題,函數值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等.客觀上這些觀點就是分化點,有的內容還是高初中教材都不講的脫節內容,如不采取補救措施,查缺補漏,分化是不可避免的。
2、被動學習.許多同學進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學內容。不知道或不明確學習數學應具有哪些學習方法和學習策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法.而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯系,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
3、對自己學習數學的好差(或成敗)不了解,更不會去進行反思總結,甚至根本不關心自己的成敗。
4、不能計劃學習行動,不會安排學習生活,更不能調節控制學習行為,不能隨時監控每一步驟,對學習結果不會正確地自我評價。
5、不重視基礎.一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質”,陷入題海.到正規作業或考試中不是演算出錯就是中途“卡殼”。 此外,還有許多學生數學學習興趣不濃厚,不具備應用數學的意識和能力,對數學思想方法重視不夠或掌握情況不好,缺乏將實際問題轉化為數學問題的能力,缺乏準確運用數學語言來分析問題和表達思想的能力,思維缺乏靈活性、批判性和發散性等。所有這些都嚴重制約著學生數學成績的提高
三、教學目標與要求
必修1,主要涉及兩章內容:
第一章:集合
通過本章學習,使學生感受到用集合表示數學內容時的簡潔性、準確性,幫助學生學會用集合語言表示數學對象,為以后的學習奠定基礎。
1.了解集合的含義,體會元素與集合的屬于關系,并初步掌握集合的表示方法;
2.理解集合間的包含與相等關系,能識別給定集合的子集,了解全集與空集的含義;
3.理解補集的含義,會求在給定集合中某個集合的補集;
4.理解兩個集合的并集和交集的含義,會求兩個簡單集合的并集和交集;
5.滲透數形結合、分類討論等數學思想方法;
6.在引導學生觀察、分析、抽象、類比得到集合與集合間的關系等數學知識的過程中,培養學生的思維能力。
第二章:函數的概念與基本初等函數Ⅰ
教學本章時應立足于現實生活從具體問題入手,以問題為背景,按照“問題情境—數學活動—意義建構—數學理論—數學應用—回顧反思”的順序結構,引導學生通過實驗、觀察、歸納、抽象、概括,數學地提出、分析和解決問題。通過本章學習,使學生進一步感受函數是探索自然現象、社會現象基本規律的工具和語言,學會用函數的思想、變化的觀點分析和解決問題,達到培養學生的創新思維的目的。
1.了解函數概念產生的背景,學習和掌握函數的概念和性質,能借助函數的知識表述、刻畫事物的變化規律;
2.理解有理指數冪的意義,掌握有理指數冪的運算性質;掌握指數函數的概念、圖象和性質;理解對數的概念,掌握對數的運算性質,掌握對數函數的概念、圖象和性質;了解冪函數的概念和性質,知道指數函數、對數函數、冪函數時描述客觀世界變化規律的重要數學模型;
第三章:函數的應用
函數的應用是學習函數的一個重要方面,學生學習函數的應用,目的就
是利用已有的函數知識分析問題和解決問題.通過函數的應用,對完善函數思想,激發學生應用數學的意識,培養分析問題、解決問題的能力,增強進行實踐的能力等,都有很大的幫助。
1.了解函數與方程之間的關系;會用二分法求簡單方程的近似解;了解函數模型及其意義;
2.培養學生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創新意識與探究能力、數學建模能力以及數學交流的能力。
必修4:主要涉及三章內容:
第一章:三角函數
通過本章學習,有助于學生認識三角函數與實際生活的緊密聯系,以及三角函數在解決實際問題中的廣泛應用,從中感受數學的價值,學會用數學的思維方式觀察、分析現實世界、解決日常生活和其他學科學習中的問題,發展數學應用意識。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函數的定義,理解同角三角函數的基本關系及誘導公式;
3.了解三角函數的周期性;
4.掌握三角函數的圖像與性質。
第二章:平面向量
在本章中讓學生了解平面向量豐富的實際背景,理解平面向量及其運算的意義,能用向量的語言和方法表述和解決數學和物理中的一些問題,發展運算能力和解決實際問題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數乘的運算;
3.理解平面向量的正交分解及其坐標表示,掌握平面向量的坐標運算;
4.理解平面向量數量積的含義,會用平面向量的數量積解決有關角度和垂直的問題。
第三章:三角恒等變換
通過推導兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦
高一數學教學計劃2
一、教材資料分析
函數是高中數學的重要資料,函數的表示法是“函數及其表示”這一節的主要資料之一。學習函數的表示法,不僅僅是研究函數本身和應用函數解決實際問題所必須涉及的問題,也是加深對函數概念理解所必須的。同時,基于高中階段所接觸的許多函數均可用幾種不一樣的方式表示,因而學習函數的表示也是領悟數學思想方法(如數形結合、化歸等)、學會根據問題需要選擇表示方法的重要過程。
學生在學習用集合與對應的語言刻畫函數之前,比較習慣于用解析式表示函數,但這是對函數很不全面的認識。在本節中,從引進函數概念開始,就比較注重函數的不一樣表示方法:解析法、圖象法、列表法。函數的不一樣表示法能豐富對函數的認識,幫忙理解抽象的函數概念。異常是在信息技術環境下,能夠使函數在數形結合上得到更充分的表現,使學生更好地體會這一重要的數學思想方法。所以,在研究函數時,應充分發揮圖象直觀的作用;在研究圖象時要注意代數刻畫,以求思考和表述的精確性。
二、教學目標分析
根據《普通高中數學課程標準》(實驗)和新課改的理念,我從知識、本事和情感三個方面制訂教學目標。
1、明確函數的三種表示方法(圖象法、列表法、解析法),經過具體的實例,了解簡單的分段函數及其應用。
2、經過解決實際問題的過程,在實際情境中能根據不一樣的需要選擇恰當的方法表示函數,發展學生思維本事。
3、經過一些實際生活應用,讓學生感受到學習函數表示的必要性;經過函數的解析式與圖象的結合滲透數形結合思想。
三、教學問題診斷分析
(1)初中已經接觸過函數的三種表示法:解析法、列表法和圖象法、高中階段重點是讓學生在了解三種表示法各自優點的基礎上,使學生會根據實際情境的需要選擇恰當的表示方法。所以,教學中應當多給出一些具體問題,讓學生在比較、選擇函數模型表示方式的過程中,加深對函數概念的整體理解,而不再誤以為函數都是能夠寫出解析式的。
(2)分段函數很多存在,但比較繁瑣。一方面,要加強用分段函數模型刻畫實際問題的實踐,另一方面,還能夠經過動畫模擬,讓學生體驗到,分段函數的問題應當分段解決,然后再綜合。這也為下一步研究分段函數的單調性等性質打下伏筆。
四、本節課的教法特點以及預期效果分析
(一)、本節課的教法特點
根據教學資料,結合學生的具體情景,我采用了學生自主探究和教師啟發引導相結合的教學方式。在整個的教學過程中讓學生盡可能地動手、動腦,調動學生進取性,充分地參與學習的全過程。倡導學生主動參與、樂于探究、勤于動手,逐步培養學生能夠利用函數來處理信息的本事。
(二)、本節課預期效果
1、經過具體的實例,讓學生體會函數三種表示法的優、缺點。
創造問題情景這種情景的創設以具體事例出發,印象深刻。所以在引入時先從函數的三要素入手,強調要素之一對應關系,然后給出三個具體實例:
(1)炮彈發射時,距離地面的高度隨時間變化的情景;
(2)用圖表的形式給出臭氧層空洞的面積與時間的關系;
(3)恩格爾系數的變化情景。
指出每種對應分別以怎樣的形式展現。引出函數的表示方法這一課題。因為我們這節課的重點是讓學生在實際情景中,會根據不一樣的需要選擇恰當的表示方法。會選擇的前提是理解,這些完全靠學生的現實經驗,讓學生自我去發現各自的優劣。這為第一道例題打下基礎。
例1經過具體例子,讓學生用三種不一樣的表示方法來表示的同一個函數,進一步理解函數概念。把問題交給學生,學生獨立完成,并自我檢查發現問題,加深學生對三種表示法的深刻理解。學生思考函數表示法的規定。注意本例的設問,此處“”有三種含義,它能夠是解析表達式,能夠是圖象,也能夠是對應值表。
由于這個函數的圖象由一些離散的點組成,與以前學習過的一次函數、二次函數的圖象是連續的曲線不一樣。經過本例,進一步讓學生感受到,函數概念中的對應關系、定義域、值域是一個整體、函數y=5x不一樣于函數y=5x(x∈{1,2,3,4,5}),前者的圖象是(連續的)直線,而后者是5個離散的點。由此認識到:“函數圖象既能夠是連續的曲線,也能夠是直線、折線、離散的點,等等。”并明確:如何確定一個圖形是否是函數圖象方法
2、讓學生會根據不一樣的實例選擇恰當的方法表示函數
例2用表格法表示了函數。要“對這三位運動員的成績做一個分析”不太方便,所以需要改變函數表示的方法,選擇圖象法比較恰當。教學中,先不必直接把圖象法告訴學生,能夠讓學生說說自我是如何分析的,選擇了什么樣的方法來表示這三個函數、經過比較各種不一樣的表示方法,達成共識:用圖象法比較好。培養學生根據實際需要選擇恰當的函數表示法的本事。
學生經過觀察、思考獲得結論、比如總體水平(朱啟南成績好)、變化趨勢(劉天佑的成績在逐步提高)、與運動員的平均分的比較,等等。培養學生的觀察本事、獲取有用信息的本事。同時要求學生注意圖中的虛線不是函數圖象的組成部分,之所以用虛線連接散點,主要是為了區分這三個函數,直觀感受三個函數的圖象具有整體性,也便于分析成績情景,加以比較。
3、經過具體的實例,了解分段函數及其表示
生活中有很多能夠用分段函數描述的實際問題,如出租車的計費、個人所得稅納稅稅額等等。經過例3的教學,讓學生了解分段函數及其表示。為了便于學生理解,給出了實際情景的模擬。能夠使函數在數與形兩方面的結合得到更充分的表現,使學生經過函數的學習更好地體會數形結合的數學思想方法。
高一數學教學計劃3
教材分析:
解不等式是不等式學習的主要內容,是中學數學的一項重要技能。主要類型有:一元一次不等式或不等式組的解法,一元二次不等式或不等式組的解法。其中,一次不等式的解法是基礎,初中已經學習,二次不等式是重點,也是學習的難點。作為數學重要的工具及方法,經常運用于其它數學知識之中。一元二次不等式的解法主要有二種,課本上介紹的是“數形結合”方法,這種方法將二次函數,二次方程結合為一體,并且借助“圖形”直觀地得出答案,充分展現了數學知識之間的內在聯系,另外也展現了“數形結合”思想方法的巨大魅力。然而,個人認為,還有一種更加自然的方法,將二次不等式轉化為一次不等式組的方法,這種方法思路自然,同時也體現了“轉化”思想,難度也不大,應該更加符合學生的實際思維及思路。
學情分析:
初中已經學習了一元一次不等式(或組)的解法,積累了一定的解題經驗。同時,對于二次方程,二次函數等相關知識學生均較為熟悉。然而,根據自己的調查,一少部分學生對于一元一次不等式及不等式組的解法都表現出一定程度的陌生。進而,可以先從復習簡單的一次不等式及不等式組入手加以展開教學。
學生心理方面,學習積極性較高,對數學的學習興趣、信心也比較理想,有較強的學習動機——考上大學,盡管是外在的誘因。
教學目標:
①知識與技能
熟練掌握一元一次不等式及不等式組的解法,初步學會兩種方法求出一元二次不等式的解集
②過程與方法
經歷不等式求解的探索及發現過程,體驗“數形結合及轉化”思想的魅力,掌握方法,學會學習
③情感、態度及價值觀
在上述過程中,體驗成功,激發了對數學學習的興趣及信心,發展了對數學學習的積極情感,增強了學習的內在動機
教學重點:
一元二次不等式的解法
教學難點:
解法的探索及發現,關鍵在于“識圖能力”
反思:
今天的課堂,這個難點突破欠缺力量,主要緣于自己備課時對難點考慮不到位,進而缺乏必要的設計。在課堂上,就難點特別與個別差生進行了交流,并且給予了幫助及指導。在指導過程中,我找出了他們困難的二個環節:
首先,對平面曲線上點的橫坐標與縱座標之間的對應關系表現陌生,進而對它們的取值變化情況感到費解。
其次,是差生的思維能力尚處于“經驗思維”,辯證思維能力薄弱,進而對運動中的點的坐標取值范圍只能是“一籌莫展”。
在了解情況后,遵循“最近發展區”原理,以問題串的形式給差生提供必要的幫助后,差生也順利度過了難關。由此足以說明,從知識的角度而言,“沒有教不好的學生,只有不會教的教師:這句話還是相當有道理的。當然,這一切的前提就是對學生“學情”的掌握。美國著名心理學家、結構主義學派的代表人布魯納也有類似觀點:給我一打健康的兒童,我可以教會他任何任何學科任何年齡段的任何知識。
教學程序:
一、復習一元一次不等式及不等式組的解法
以題組形式設計習題
①2x+3>7
②不等式組
③ax>b
二、創設二次不等式的生活背景實例,引入課題
采用課本上的實例,有關網絡收費問題
三、一元二次不等式的解法探索
(1)
在教師的啟發引導下,從特殊到一般,學生經歷“轉化”方法的探索及發現過程。
由于這種方法課本沒有給出,進而課堂上不作為重點,重在引導學生自行歸納、體驗及總結“轉化”思想,最后以課外思考題的形式設計相應習題。
(2)
采取啟發式教學,師生共同經歷“數形結合”方法的探索及發現過程,引導學生歸納出主要的解題步驟。今天的課堂上,這些解題步驟全部由學生的語言組織并完成,并撰寫在黑板上,教師沒有作任何干涉。我一直認為,只有學生自己親身體驗的.知識才是有意義的知識,盡管這些知識不完整,語言或許不規范,思維或許不嚴密。
之后,從特殊到一般,研究一般的二元一次不等式的解法。由于經歷了前面的解題過程,這個環節全部放手讓學生完成,鼓勵他們通過或獨立或合作的方式解決學習任務,完成課本上的表格。
反思:根據課堂反饋,二個班級大約有70%的同學能夠勝任這個任務。于是,在大多數學生完成的基礎上,我又進行了一次講解,特別加強了對“識圖”環節的講解力度,力求突破難點。
四、練習環節
可以說,即使到了高三,仍然有不少同學對于一元二次不等式解法的困惑。因此,熟練掌握二次不等式的解法,既是重點,也是難點。從學習類型看,這節課顯然屬于技能課,對于技能的學習及掌握,關鍵是強化練習,“力求熟能生巧”,達到自動化的水平。
課本上,配置了不少練習題。對于練習,我采取多種方式,或叫學生上黑板板書,借助學生練習規范解題格式;或者口答,說解題思路及答案;或者下面獨立練習。
五、課堂小結
知識,思想、方法及感悟等
六、課后作業
①作業設計:分成A、B兩層,難度不一,讓學生自主選擇,均來源于課本上的A組或B組
②課外思考題:
1比較兩種解題方法即“轉化及數形結合”方法的優劣,以及它們之間的異同
2已知不等式mx^2-(m-2)x+m>0的解集為R,求m的取值范圍
變式一:戓將R改為空集,此時結論如何
變式二:仿上,自己改編條件,并解之。
反思:課外思考題的設計,可以提升課堂容量,深化課堂知識,提高課堂思維含量,為優生服務,發展學生的思維能力,激發他們的學習興趣。同時,加強變式教學,可以充分拓展習題的潛在價值,期望實現“舉一反三”的目標。
高一數學教學計劃4
一、教材依據
本節課是北師大版數學(必修2)第二章《解析幾何初步》第一節《1.2直線的方程》第一部分《直線方程的點斜式》內容。
二、教材分析
直線方程的點斜式給出了根據已知一個點和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式
、兩點式都是由點斜式推出的。從初中代數中的一次函數引入,自然過渡到本節課想要解決的問題求直線方程問題。在引入,過程中要讓學生弄清
直線與方程的一一對應關系,理解研究直線可以從研究方程和方程的特征入手。
在推導直線方程的點斜式時,根據直線這一結論,先猜想確定一條直線的條件,再根據猜想得到的條件求出直線方程。
三、教學目標
知識與技能:
(1)理解直線方程的點斜式、斜截式的形式特點和適用范圍;
(2)能正確利用直線的點斜式、斜截式公式求直線方程。
(3)體會直線的斜截式方程與一次函數的關系。
過程與方法:在已知直角坐標系內確定一條直線的幾何要素直線上的一點和直線的傾斜角的基礎上,通過師生探討,得出直線的點斜式方程;學生
通過對比理解截距與距離的區別。
情態與價值觀:通過讓學生體會直線的斜截式方程與一次函數的關系,進一步培養學生數形結合的思想,滲透數學中普遍存在相互聯系、相互轉化
等觀點,使學生能用聯系的觀點看問題。
四、教學重點
重點:直線的點斜式方程和斜截式方程。
五、教學難點
難點:直線的點斜式方程和斜截式方程的應用。
要點:運用數形結合的思想方法,幫助學生分析描述幾何圖形。
六、教學準備
1.教學方法的選擇:啟發、引導、討論.
創設問題情境,采用啟發誘導式的教學模式引導學生探索討論,學生主動參與提出問題、探索問題和解決問題的過程,突出以學生為主體的探究性
學習活動。
2.通過讓學生觀察、討論、辨析、畫圖,親身實踐,調動多感官去體驗數學建模的思想;學生要學會用數形結合的方法建立起代數問題與幾何問題
間的密切聯系。為使學生積極參與課堂學習,我主要指導了以下的學習方法:
①.讓學生自己發現問題,自己通過觀察圖像歸納總結,自己評析解題對錯,從而提高學生的參與意識和數學表達能力。
②.分組討論。
高一數學教學計劃5
教材教法分析
本節課是蘇教版普通高中課程標準實驗教科書數學必修(2)第2章第三節的第一節課。該課是在二維平面直角坐標系基礎上的推廣,是空間立體幾何的代數化。教材通過一個實際問題的分析和解決,讓學生感受建立空間直角坐標系的必要性,內容由淺入深、環環相扣,體現了知識的發生、發展的過程,能夠很好的誘導學生積極地參與到知識的探究過程中。同時,通過對《空間直角坐標系》的學習和掌握將對今后學習本節內容《空間兩點間的距離》和選修2—1內容《空間中的向量與立體幾何》有著鋪墊作用。由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標系。
學情分析
一方面學生通過對空間幾何體:柱、錐、臺、球的學習,處理了空間中點、線、面的關系,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力。另一方面學生剛剛學習了解析幾何的基礎內容:直線和圓,對建立平面直角坐標系,根據坐標利用代數的方法處理問題有了一定的認識,因此也建立了一定的轉化和數形結合的思想。這兩方面都為學習本課內容打下了基礎。
教學目標
1、知識與技能
①通過具體情境,使學生感受建立空間直角坐標系的必要性
②了解空間直角坐標系,掌握空間點的坐標的確定方法和過程
③感受類比思想在探究新知識過程中的作用
2、過程與方法
①結合具體問題引入,誘導學生探究
②類比學習,循序漸進
3、情感態度與價值觀
通過用類比的數學思想方法探究新知識,使學生感受新舊知識的聯系和研究事物從低維到高維的一般方法。通過實際問題的引入和解決,讓學生體會數學的實踐性和應用性,感受數學刻畫生活的作用,不斷地拓展自己的思維空間。
教學重點
本課是本節第一節課,關鍵是空間直角坐標系的建立,對今后相關內容的學習有著直接的影響作用,所以本課教學重點確立為“空間直角坐標系的理解”。
教學難點
“通過建立恰當的空間直角坐標系,確定空間點的坐標”。
先通過具體問題回顧平面直角坐標系,使學生體會用坐標刻畫平面內任意點的位置的方法,進而設置具體問題情境促發利用舊知解決問題的局限性,從而尋求新知,根據已有一定空間思維,所以能較容易得出“第三根軸”的建立,進而感受逐步發展得到“空間直角坐標系”的建立,再逐步掌握利用坐標表示空間任意點的位置。總得來說,關鍵是具體問題情境的設立,不斷地讓學生感受,交流,討論。
高一數學教學計劃6
進一步深化教育教學改革,樹立全新的語文教育觀,構建全新而科學的教學目標體系、數學網特制定高一上學期數學函數的基本性質教學計劃模板。
教材分析
函數性質是函數的固有屬性,是認識函數的重要手段,而函數性質可以由函數圖象直觀的反應出來,因此,函數各個性質的學習要從特殊的、已知的圖象入手,抽象出此類函數的共同特征,并用數學語言來定義敘述。基于此,本節的概念課教學要注重引導,注重知識的形成過程,習題課教學以具體技巧、方法作為輔助練習。
學情分析
學生對函數概念重新認識之后,可以結合初中學過的簡單函數的圖象對函數性質進行抽象定義。另外,為了方便學生做題及熟悉函數性質,還需要補充一些函數圖象的知識,例如平移、二次函數圖象、含絕對值函數的圖象、反比例函數及其變形的函數圖象。總之,本節課的教學要從學生認知實際出發,堅持從圖象中來到圖象中去的原則。
教學建議
以圖象作為切入點進行概念課教學,引導學生對概念的形成有一個清晰的認識,尤其是概念中的部分關鍵詞要做深入講解,用函數圖象指導學生做題。
教學目標
知識與技能
(1)能理解函數單調性、最值、奇偶性的圖形特征
(2)會用單調性定義證明具體函數的單調性;會求函數的最值;會用奇偶性定義判斷函數奇偶性
(3)單調性與奇偶性的綜合題
(4)培養學生觀察、歸納、推理的抽象思維能力
過程與方法
(1)從觀察具體函數的圖像特征入手,結合相應問題引導學生一步步轉化到用數學語言形式化的建立相關概念
(2)滲透數形結合的數學思想進行習題課教學
情感、態度與價值觀
(1)使學生學會認識事物的一般規律:從特殊到一般,抽象歸納
(2)培養學生嚴密的邏輯思維能力,進一步規范學生用數學語言、數學符號進行表達
課時安排
(1)概念課:單調性2課時,最值1課時,奇偶性1課時
(2)習題課:5課時
高一數學教學計劃7
本節課在教材中的地位和作用:《不等式的基本性質》,對即將要學習的一元一次不等式的解法乃至高中的不等式的運用都是非常重要的基礎。本節內容掌握的好壞,將直接影響到后面的教學內容。而對于不等式的基本性質1和2,相信絕大部分的學生都不會有很大困難,而不等式的基本性質3,通過對以往學生的了解,發現很多學生會忘記分正負兩種情況,因此在本節新課教學中,我采用了將不等式未知的性質與等式已知的性質進行類比教學,讓學生自己去發現驗證不等式的性質。
一、教學目標:
(一)知識與技能
1.掌握不等式的三條基本性質。
2.運用不等式的基本性質對不等式進行變形。
(二)過程與方法
1.通過等式的性質,探索不等式的性質,初步體會“類比”的數學思想。
2.通過觀察、猜想、驗證、歸納等數學活動,經歷從特殊到一般、由具體到抽象的認知過程,感受數學思考過程的條理性,發展思維能力和語言表達能力。
(三)情感態度與價值觀
通過探究不等式基本性質的活動,培養學生合作交流的意識和大膽猜想,樂于探究的良好思維品質。
二、教學重難點
教學重點: 探索不等式的三條基本性質并能正確運用它們將不等式變形。
教學難點: 不等式基本性質3的探索與運用。
三、教學方法:自主探究——合作交流
四、教學過程:
情景引入:1.舉例說明什么是不等式?
2.判斷下列各式是否成立?并說明理由。
( 1 )若x-4=12, 則x=16()
( 2 )若3x=12, 則 x=4()
( 3 )若x-4>12 則 x>16()
( 4 )若3x>12則 x>4()
【設計意圖】(1)、(2)小題喚起對舊知識等式的基本性質的回憶,(3)、(4)小題引導學生大膽說出自己的想法。通過復習既找準了舊知停靠點,又創設了一種情境,給學生提供了類比、想象的空間,為后續學習做好了鋪墊。
教師導語:當我們開始研究不等式的時候,自然會聯想到它是否與等式有相類似的性質。這節課我們就通過類比來探究不等式的基本性質。
溫故知新
問題1.由等式性質1你能猜想一下不等式具有什么樣的性質嗎?
等式性質1:等式兩邊都加上或減去同一個數(或同一個整式),所得結果仍是不等式。
估計學生會猜:不等式兩邊都加上或減去同一個數(或同一個整式),所得結果仍是不等式。教師引導:“=”沒有方向性,所以可以說所得結果仍是等式,而不等號:“>,<,≥,≤”具有方向性,我們應該重點研究它在方向上的變化。
問題2.你能通過實驗、猜想,得出進一步的結論嗎?
同桌同學通過實例驗證得出結論,師生共同總結不等式性質1。
問題3.你能由等式性質2進一步猜想不等式還具有什么性質嗎?
等式性質2:等式兩邊都乘或除以同一個數(除數不能是0),等式依然成立。
估計學生會猜:不等式兩邊都乘或除以同一個數(除數不能是0),不等號的方向不變。
你能和小伙伴一起來驗證你們的猜想嗎?(教師鼓勵學生實踐是檢驗真理的唯一標準。)
學生在小組內合作交流,發現了在不等式兩邊都乘或除以同一個數時,不等號的方向會出現兩種情況。教師進一步引導學生通過分析、比較探索規律,從而形成共識,歸納概括出不等式性質2和3。
【設計意圖】猜想作為教學的出發點,啟發學生積極思維,探索規律,讓學生在“做”數學中學數學,真正成為學習的主人。
問題4.在不等式兩邊都乘0會出現什么情況?
問題5.如果a、b、c表示任意數,且a
【設計意圖】把文字語言轉化為數學語言,是數學學習中的一項基本能力,這里有意識地進行滲透,指導學生先作變形再填不等號,對字母c的取值進行討論,培養學生的分類意識,對培養學生的思維能力有十分重要的意義。
【想一想】不等式的基本性質與等式的基本性質有什么相同之處,有什么不同之處?
學生思考,獨立總結異同點。
【設計意圖】引導學生把二者進行比較,有助于加深對不等式基本性質的理解,促成知識的“正遷移”。
綜合訓練:你能運用不等式的基本性質解決問題嗎?
1、課本62頁例3
教師引導學生觀察每個問題是由a>b經過怎樣的變形得到的,應該應用不等式的哪條基本性質。由學生思考后口答。
【設計意圖】對學生進行推理訓練,讓學生明白,敘述要有根據,進一步提高學生的邏輯思維能力和語言表達能力。
2、你認為在運用不等式的基本性質時哪一條性質最容易出錯,應該怎樣記住?
【設計意圖】及時進行學習反思,總結經驗,通過相互評價學習效果,及時發現問題、解決知識盲點,培養學生的創新精神和實踐能力。
3.小明的困惑:
小明用不等式的基本性質將不等式m>n進行變形,兩邊都乘以4,4m>4n,兩邊都減去4m, 0>4n-4m,即0>4(n-m),兩邊都除以(n-m),得0>4,0怎么會大于4呢?
小明可糊涂了……聰明的同學,你能告訴小軍他究竟錯在什么地方嗎?同桌討論。
【設計意圖】通過替人排憂解難,強化對不等式三個基本性質的理解與運用,突出重點,突破難點。
4.火眼金睛
①a>2, 則3a___2a
②2a>3a,則 a ___ 0
【設計意圖】通過變式訓練,加深學生對新知的理解,培養學生分析、探究問題的能力。
課堂小結:
這節課你有哪些收獲?有何體會?你認為自己的表現如何?教師引導學生回顧、思考、交流。
【設計意圖】回顧、總結、提高。學生自覺形成本節的課的知識網絡。
思考題:你來決策
咱們班的王帥同學準備在五、一期間和他的爸爸、媽媽外出旅游。青年旅行社的標準為:大人全價,小孩半價;方正旅行社的標準為:大人、小孩一律八折。若兩家旅行社的基本價一樣,你能幫王帥同學考慮一下選擇哪家旅行社更合算嗎?
【設計意圖】利用所學的數學知識,解決生活中的問題,加強數學與生活的聯系,體驗數學是描述現實世界的重要手段。既培養了學生用數學知識解決實際問題的能力,又樹立了學好數學的信心。
高一數學教學計劃8
一 設計思想:
函數與方程是中學數學的重要內容,是銜接初等數學與高等數學的紐帶,再加上函數與方程還是中學數學四大數學思想之一,是具體事例與抽象思想相結合的體現,在教學過程中,我采用了自主探究教學法。通過教學情境的設置,讓學生由特殊到一般,有熟悉到陌生,讓學生從現象中發現本質,以此激發學生的成就感,激發學生的學習興趣和學習熱情。在現實生活中函數與方程都有著十分重要的應用,因此函數與方程在整個高中數學教學中占有非常重要的地位。
二 教學內容分析:
本節課是《普通高中課程標準》的新增內容之一,選自《普通高中課程標準實驗教課書數學I必修本(A版)》第94—95頁的第三章第一課時3。1。1方程的根與函數的的零點。
本節通過對二次函數的圖象的研究判斷一元二次方程根的存在性以及根的個數的判斷建立一元二次方程的根與相應的二次函數的零點的聯系,然后由特殊到一般,將其推廣到一般方程與相應的函數的情形。它既揭示了初中一元二次方程與相應的二次函數的內在聯系,也引出對函數知識的總結拓展。之后將函數零點與方程的根的關系在利用二分法解方程中(3。1。2)加以應用,通過建立函數模型以及模型的求解(3。2)更全面地體現函數與方程的關系,逐步建立起函數與方程的聯系。滲透“方程與函數”思想。
總之,本節課滲透著重要的數學思想“特殊到一般的歸納思想”“方程與函數”和“數形結合”的思想,教好本節課可以為學好中學數學打下一個良好基礎,因此教好本節是至關重要的。
三 教學目標分析:
知識與技能:
1。結合方程根的幾何意義,理解函數零點的定義;
2。結合零點定義的探究,掌握方程的實根與其相應函數零點之間的等價關系;
3。結合幾類基本初等函數的圖象特征,掌握判斷函數的零點個數和所在區間 的方法
情感、態度與價值觀:
1。讓學生體驗化歸與轉化、數形結合、函數與方程這三大數學思想在解決數學問題時的意義與價值;
2。培養學生鍥而不舍的探索精神和嚴密思考的良好學習習慣;
3。使學生感受學習、探索發現的樂趣與成功感
教學重點:函數零點與方程根之間的關系;連續函數在某區間上存在零點的判定方法。
教學難點:發現與理解方程的根與函數零點的關系;探究發現函數存在零點的方法。
四 教學準備
導學案,自主探究,合作學習,電子交互白板。
五 教學過程設計:略
六、探索研究(可根據時間和學生對知識的接受程度適當調整)
討論:請大家給方程的一個解的大約范圍,看誰找得范圍更小?
[師生互動]
師:把學生分成小組共同探究,給學生足夠的自主學習時間,讓學生充分研究,發揮其主觀能動性。也可以讓各組把這幾個題做為小課題來研究,激發學生學習潛能和熱情。老師用多媒體演示,直觀地演示根的存在性及根存在的區間大小情況。
生:分組討論,各抒己見。在探究學習中得到數學能力的提高
第五階段設計意圖:
一是為用二分法求方程的近似解做準備
二是小組探究合作學習培養學生的創新能力和探究意識,本組探究題目就是為了培養學生的探究能力,此組題目具有較強的開放性,探究性,基本上可以達到上述目的。
七、課堂小結:
零點概念
零點存在性的判斷
零點存在性定理的應用注意點:零點個數判斷以及方程根所在區間
八、鞏固練習(略)
小編為大家提供的高一上學期數學教學計劃格式,大家仔細閱讀了嗎?最后祝同學們學習進步。
高一數學教學計劃9
一、指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注意參透教學思想和方法,針對學生實際,不斷研究數學教學,改進教法,指導學法。
數學目標要求
1、理解集合及充要條件的有關知識,掌握不等式的性質,一元二次不等式、絕對值不等的解法,掌握函數的概念及指數函數,對函數和幕函數的性質和圖象。
2、理解角的概念的推廣和三角函數的定義,掌握基本的三角函數公式和三角函數巔峰性質、圖像,理解三角函數的周期性
3、理解數列的概念,掌握等差數列和等比數列的性質,并會求等差數列、等比數列前n項的和。
4、掌握平面向量時有關概念和運算,掌握直線和圓的方程的求法。
5、掌握空間幾何直線、平面之間的位置關系及其判定方法。
6、掌握概率與統計初步里的計數原理,理解三種抽樣方法,會求簡單問題的概率。
二、教學建議
1、深入鉆研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練掌握知識和邏輯體系,細致領悟教材改革的精髓,逐步明確教材教學形式,內容和教學目標的影響。
2、準確吧握新大綱。新大綱修改了部分內容的教學要求層次,把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上要重視數學應用;重視教學思想方法的參透。
3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施材,以學生為賬戶提,構建新的認識體系,營造有利于學生的氛圍。
4、發揮教材的多種教學功能。用好章頭圖,激發學生學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和復習是培養學生自學的好材料。
5、加強課堂研究,科學設計教學方法。根據教材的內容和特征,實行啟發式和討論式教學。發揚教學民主,師生雙方親切合作,交流互動,讓學生感受、理解知識的產生和發展的過程。根據材料個章節的重難點制定教學專題,積累教學經驗。
6、落實課外活動內容,組織和加強數學興趣小組的活動內容,加強對高層次學生的競賽輔導,培養拔尖人才。
三、教學進度
高一上學期
高一下學期
周次內容
周次內容
1-4復習初中知識和集合1-3數列
5充要條件
4-6平面向量
6-7不等式7-9直線的方程
8-10
函數10期中考試
11
期中考試11-12圓的方程
12-14指數函數與對數函數13-15
立體幾何
15-18三角函數16-18概率與統計初步
19-20期末、總復習、考試19-20
總復習與期末考試
總結:制定教學計劃的主要目的是為了全面了解學生的數學學習歷程,激勵學生的學習和改進教師的教學。
高一數學教學計劃10
教學目標 :
(1)理解子集、真子集、補集、兩個集合相等概念;
(2)了解全集、空集的意義,
(3)掌握有關的符號及表示方法,會用它們正確表示一些簡單的集合,培養學生的符號表示的能力;
(4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;
(5)能判斷兩集合間的包含、相等關系,并會用符號及圖形(文氏圖)準確地表示出來,培養學生的數學結合的數學思想;
(6)培養學生用集合的觀點分析問題、解決問題的能力.
教學重點:子集、補集的概念
教學難點 :弄清元素與子集、屬于與包含之間的區別
教學用具:幻燈機
教學過程 設計
(一)導入 新課
上節課我們學習了集合、元素、集合中元素的三性、元素與集合的關系等知識.
【提出問題】(投影打出)
已知 , , ,問:
1.哪些集合表示方法是列舉法.
2.哪些集合表示方法是描述法.
3.將集M、集從集P用圖示法表示.
4.分別說出各集合中的元素.
5.將每個集合中的元素與該集合的關系用符號表示出來.將集N中元素3與集M的關系用符號表示出來.
6.集M中元素與集N有何關系.集M中元素與集P有何關系.
【找學生回答】
1.集合M和集合N;(口答)
2.集合P;(口答)
3.(筆練結合板演)
4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)
5. , , , , , , , (筆練結合板演)
6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)
【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關系,而具有這種關系的兩個集合在今后學習中會經常出現,本節將研究有關兩個集合間關系的問題.
(二)新授知識
1.子集
(1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。
記作: 讀作:A包含于B或B包含A
當集合A不包含于集合B,或集合B不包含集合A時,則記作:A B或B A.
性質:① (任何一個集合是它本身的子集)
② (空集是任何集合的子集)
【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?
【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合.
因為B的子集也包括它本身,而這個子集是由B的全體元素組成的.空集也是B的子集,而這個集合中并不含有B中的元素.由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的.
(2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。
例: ,可見,集合 ,是指A、B的所有元素完全相同.
(3)真子集:對于兩個集合A與B,如果 ,并且 ,我們就說集合A是集合B的真子集,記作: (或 ),讀作A真包含于B或B真包含A。
【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集.”
集合B同它的真子集A之間的關系,可用文氏圖表示,其中兩個圓的內部分別表示集合A,B.
【提問】
(1) 寫出數集N,Z,Q,R的包含關系,并用文氏圖表示。
(2) 判斷下列寫法是否正確
① A ② A ③ ④A A
性質:
(1)空集是任何非空集合的真子集。若 A ,且A≠ ,則 A;
(2)如果 , ,則 .
例1 寫出集合 的所有子集,并指出其中哪些是它的真子集.
解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.
【注意】(1)子集與真子集符號的方向。
(2)易混符號
①“ ”與“ ”:元素與集合之間是屬于關系;集合與集合之間是包含關系。如 R,{1} {1,2,3}
②{0}與 :{0}是含有一個元素0的集合, 是不含任何元素的集合。
如: {0}。不能寫成 ={0}, ∈{0}
例2 見教材P8(解略)
例3 判斷下列說法是否正確,如果不正確,請加以改正.
(1) 表示空集;
(2)空集是任何集合的真子集;
(3) 不是 ;
(4) 的所有子集是 ;
(5)如果 且 ,那么B必是A的真子集;
(6) 與 不能同時成立.
解:(1) 不表示空集,它表示以空集為元素的集合,所以(1)不正確;
(2)不正確.空集是任何非空集合的真子集;
(3)不正確. 與 表示同一集合;
(4)不正確. 的所有子集是 ;
(5)正確
(6)不正確.當 時, 與 能同時成立.
例4 用適當的符號( , )填空:
(1) ; ; ;
(2) ; ;
(3) ;
(4)設 , , ,則A B C.
解:(1)0 0 ;
(2) = , ;
(3) , ∴ ;
(4)A,B,C均表示所有奇數組成的集合,∴A=B=C.
【練習】教材P9
用適當的符號( , )填空:
(1) ; (5) ;
(2) ; (6) ;
(3) ; (7) ;
(4) ; (8) .
解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .
提問:見教材P9例子
(二) 全集與補集
1.補集:一般地,設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作 ,即
.
A在S中的補集 可用右圖中陰影部分表示.
性質: S( SA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},則 SA={2,4,6};
(2)若A={0},則 NA=N*;
(3) RQ是無理數集。
2.全集:
如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用表示.
注: 是對于給定的全集 而言的,當全集不同時,補集也會不同.
例如:若 ,當 時, ;當 時,則 .
例5 設全集 , , ,判斷 與 之間的關系.
高一數學教學計劃11
本學期,我負責高一三、四班的數學教學。這兩個班有138名學生。初中生基礎薄弱,整體水平不高。從兩周的課堂來看,學生的學習積極性仍然很高,有很多學生喜歡提問。但由于基礎知識薄弱,學習習慣差,自我控制能力差,無法正確定位自己,課堂效率普遍,教學工作存在必要的難度。為了做好本學期的教學工作,特制定以下教學工作計劃。
一、教學質量目標
(1)掌握必要的數學基礎知識和技能,理解基本數學概念和數學結論的實質,體驗數學思想和方法。
(2)培養學生的邏輯思維能力、計算能力、空間想象能力,以及綜合運用相關數學知識分析和解決問題的能力。使學生逐步學會觀察、分析、綜合、比較、抽象、概括、探索和創新的技能,運用歸納、演繹、類比的方法進行推理,正確、系統地表達推理過程的技能。
(3)根據數學學科特點,加強學習目的教育,提高學生學習數學的意識和興趣,培養學生良好的學習習慣、求實的科學態度、頑強的學習毅力和獨立思考的精神,探索創新。
(4)使學生具有必要的數學視野,逐步理解數學的科學價值、應用價值和文化價值,形成批判性思維習慣,倡導數學的理性精神,體驗數學的審美意義,理解普遍運動、變化、創新、創新,數學相互聯系、相互轉化,進一步樹立辯證唯物主義和歷史唯物主義的世界觀。
(5)通過收集信息、處理數據、制作圖像、分析原因、得出結論,學習解決實際問題的思維方法和操作方法。
(6)本學期是高一的重要時期。教師負有雙重責任。他們不僅要不斷夯實基礎,加強綜合技能的培養,還要滲透高考思想方法,準備三年的學習。
二、教學目標
(I)情感目標
(1)通過問題分析的教學方法,培養學生的學習興趣。
(2)提供生活背景。通過數學建模,讓學生認識到數學是存在的,培養學習數學和運用數學的意識
高一數學教學計劃12
一、學情分析
這節課是在學生已經學過的二維的平面直角坐標系的基礎上的推廣,是以后學習空間向量等內容的基礎。
二、教學目標
1. 讓學生經歷用類比的數學思想方法探索空間直角坐標系的建立方法,進一步體會數學概念、方法產生和發展的過程,學會科學的思維方法。
2. 理解空間直角坐標系與點的坐標的意義,掌握由空間直角坐標系內的點確定其坐標或由坐標確定其在空間直角坐標系內的點,認識空間直角坐標系中的點與坐標的關系。
3. 進一步培養學生的空間想象能力與確定性思維能力。
三、教學重點:在空間直角坐標系中點的坐標的確定。
四、教學難點:通過建立空間直角坐標系利用點的坐標來確定點在空間內的位置
五、教學過程
(一)、問題情景
1. 確定一個點在一條直線上的位置的方法。
2. 確定一個點在一個平面內的位置的方法。
3. 如何確定一個點在三維空間內的位置?
例:如圖,在房間(立體空間)內如何確定一個同學的頭所在位置?
在學生思考討論的基礎上,教師明確:確定點在直線上,通過數軸需要一個數;確定點在平面內,通過平面直角坐標系需要兩個數。那么,要確定點在空間內,應該需要幾個數呢?通過類比聯想,容易知道需要三個數。要確定同學的頭的位置,知道同學的頭到地面的距離、到相鄰的兩個墻面的距離即可。
(此時學生只是意識到需要三個數,還不能從坐標的角度去思考,因此,教師在這兒要重點引導)
教師明晰:在地面上建立直角坐標系xOy,則地面上任一點的位置只須利用x,y就可確定。為了確定不在地面內的電燈的位置,須要用第三個數表示物體離地面的高度,即需第三個坐標z.因此,只要知道電燈到地面的距離、到相鄰的兩個墻面的距離即可。例如,若這個電燈在平面xOy上的射影的兩個坐標分別為4和5,到地面的距離為3,則可以用有序數組(4,5,3)確定這個電燈的位置(如圖26-3)。
這樣,仿照初中平面直角坐標系,就建立了空間直角坐標系O-xyz,從而確定了空間點的位置。
(二)、建立模型
1. 在前面研究的基礎上,先由學生對空間直角坐標系予以抽象概括,然后由教師給出準確的定義。
從空間某一個定點O引三條互相垂直且有相同單位長度的數軸,這樣就建立了空間直角坐標系O-xyz,點O叫作坐標原點,x軸、y軸、z軸叫作坐標軸,這三條坐標軸中每兩條確定一個坐標平面,分別稱為xOy平面,yOz平面,zOx平面。
教師進一步明確:
(1)在空間直角坐標系中,讓右手拇指指向x軸的正方向,食指指向y軸的正方向,若中指指向z軸的正方向則稱這個坐標系為右手坐標系,課本中建立的坐標系都是右手坐標系。
(2)將空間直角坐標系O-xyz畫在紙上時,x軸與y軸、x軸與z軸成135,而y軸垂直于z軸,y軸和z軸的單位長度相等,但x軸上的單位長度等于y軸和z軸上的單位長度的 ,這樣,三條軸上的單位長度直觀上大致相等。
2. 空間直角坐標系O-xyz中點的坐標。
思考:在空間直角坐標系中,空間任意一點A與有序數組(x,y,z)有什么樣的對應關系?
在學生充分討論思考之后,教師明確:
(1)過點A作三個平面分別垂直于x軸,y軸,z軸,它們與x軸、y軸、z軸分別交于點P,Q,R,點P,Q,R在相應數軸上的坐標依次為x,y,z,這樣,對空間任意點A,就定義了一個有序數組(x,y,z)。
(2)反之,對任意一個有序數組(x,y,z),按照剛才作圖的相反順序,在坐標軸上分別作出點P,Q,R,使它們在x軸、y軸、z軸上的坐標分別是x,y,z,再分別過這些點作垂直于各自所在的坐標軸的平面,這三個平面的交點就是所求的點A.
這樣,在空間直角坐標系中,空間任意一點A與有序數組(x,y,z)之間就建立了一種一一對應關系:A (x,y,z)。
教師進一步指出:空間直角坐標系O-xyz中任意點A的坐標的概念
對于空間任意點A,作點A在三條坐標軸上的射影,即經過點A作三個平面分別垂直于x軸、y軸和z軸,它們與x軸、y軸、z軸分別交于點P,Q,R,點P,Q,R在相應數軸上的坐標依次為x,y,z,我們把有序數組(x,y,z)叫作點A的坐標,記為A(x,y,z)。
(三)、例 題 與 練 習
1. 課本135頁例1.
注意:在分析中緊扣坐標定義,強調三個步驟,第一步從原點出發沿x軸正方向移動5個單位,第二步沿與y軸平行的方向向右移動4個單位,第三步沿與z軸平行的方向向上移動6個單位(如圖26-5)。
2. 課本135頁例2
探究: (1)在空間直角坐標系中,坐標平面xOy,xOz,yOz上點的坐標有什么特點?
(2)在空間直角坐標系中,x軸、y軸、z軸上點的坐標有什么特點?
解:(1)xOy平面、xOz平面、yOz平面內的點的坐標分別形如(x,y,0),(x,0,z),(0,y,z)。
(2)x軸、y軸、z軸上點的坐標分別形如(x,0,0),(0,y,0),(0,0,z)。
3. 已知長方體ABCD-ABCD的邊長AB=12,AD=8,AA=5,以這個長方體的頂點A為坐標原點,射線AB,AD,AA分別為x軸、y軸和z軸的正半軸,建立空間直角坐標系,求這個長方體各個頂點的坐標。
注意:此題可以由學生口答,教師點評。
解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。
討論:若以C點為原點,以射線CB,CD,CC方向分別為x,y,z軸的正半軸,建立空間直角坐標系,那么各頂點的坐標又是怎樣的呢?
得出結論:建立不同的坐標系,所得的同一點的坐標也不同。
[練 習]
1. 在空間直角坐標系中,畫出下列各點:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。
2. 已知:長方體ABCD-ABCD的邊長AB=12,AD=8,AA=7,以這個長方體的頂點B為坐標原點,射線AB,BC,BB分別為x軸、y軸和z軸的正半軸,建立空間直角坐標系,求這個長方體各個頂點的坐標。
3. 寫出坐標平面yOz上yOz平分線上的點的坐標滿足的條件。
(四)、拓展延伸
分別寫出點(1,1,1)關于各坐標軸和各個坐標平面對稱的點的坐標。
六、評價設計
1、 練習 : 課本P136. 1、2、3
2、 課堂作業: 課本P138. 1、2
高一數學教學計劃13
一、教材分析(結構系統、單元內容、重難點)
必修5第一章:解三角形;重點是正弦定理與余弦定理;難點是正弦定理與余弦定理的應用;第二章:數列;重點是等差數列與等比數列的前n項的和;難點是等差數列與等比數列前n項的和與應用;第三章:不等式;重點是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規劃問題、基本不等式;難點是二元一次不等式(組)與簡單的線性規劃問題及應用;
必修2第一章:空間幾何體;重點是空間幾何體的三視圖和直觀圖及表面積與體積;難點是空間幾何體的三視圖;第二章:點、直線、平面之間的位置關系;重點與難點都是直線與平面平行及垂直的判定及其性質;第三章:直線與方程;重點是直線的傾斜角與斜率及直線方程;難點是如何選擇恰當的直線方程求解題目;第四章:圓與方程;重點是圓的方程及直線與圓的位置關系;難點是直線與圓的位置關系;
二、學生分析(雙基智能水平、學習態度、方法、紀律)
較去年而言,今年的學生的素質有了比較大的提高,學生的基礎知識水平與基本學習方法比較扎實,大部分的學生對學習都有很大的興趣,學習紀律比較自覺。
三、教學目的要求
1.通過對任意三角形邊長和角度關系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題和與測量及幾何計算有關的實際問題。
2.通過日常生活中的實例,了解數列的概念和幾種簡單的表示方法,了解數列是一種特殊的函數;理解等差數列、等比數列的概念,探索并掌握2種數列的通項公式與前n項和的公式,能用有關的知識解決相應的問題。
3.理解不等式(組)對于刻畫不等關系的意義和價值;掌握求解一元二次不等式的基本方法,并能解決一些實際問題;能用一元二次不等式組表示平面區域,并嘗試解決簡單的二元線性規劃問題。
4.幾何學研究現實世界中物體的形狀、大小與位置的學科。直觀感知、操作確認、思辨論證、度量計算是認識和探索幾何圖形及其性質的方法。先從對空間幾何體的整體觀察入手,認識空間圖形及其直觀圖的畫法;再以長方體為載體,直觀認識和理解空間中點、直線、平面之間的位置關系,并利用數學語言表述有關平行、垂直的性質與判定,對某些結論進行論證。另外了解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角坐標系中建立直線和圓的代數方程,運用代數方法研究它們的幾何性質及其相互關系,了解空間直角坐標系。體會數形結合的思想,初步形成用代數方法解決幾何問題的能力。
四、完成教學任務和提高教學質量的具體措施
積極做好集體備課工作,達到內容統一、進度統一、目標統一、例題統一、習題統一、資料統一;上好每一節課,及時對學生的思想進行觀察與指導;課后進行有效的輔導;進行有效的課堂反思。
五、教學進度
周次 課、章、節 教學內容 備注
1 1.1,1.2 解三角形
2 1.2 解三角形
3 2.1,2.2 數列的概念與簡單表示法,等差數列
4 2.3 等差數列的前n項和
5 2.4,2.5 等比數列及前n項和
6 2.5 考試
7 3.1,3.2 不等關系與不等式,一元二次不等式及其解法
8 3.3,3.4 二元一次不等式(組)與簡單線性規劃問題,基本不等式
9 考試,復習
10 期中考試
11 1.1,1.2 空間幾何體的結構,三視圖,直觀圖
12 1.3 空間幾何體的表面積與體積
13 2.1,2.2 空間點、直線、平面的位置關系,直線、平面平行的判定及其性質
14 2.3 直線、平面的判定及其性質
15 3.1,3.2 直線的傾斜角與斜率,直線方程
16 3.3 直線的交點坐標與距離公式
17 4.1,4.2 圓的方程,直線、圓的位置關系
18 4.3 空間直角坐標系
19 復習
20 考試
高一數學教學計劃14
一、學生狀況分析
學生整體水平一般,成績以中等為主,中上不多,后進生也有一些。幾個班中,從上課一周來看,學生的學習積極性還是比較高,愛問問題的同學比較多,但由于基礎知識不太牢固,上課效率不是很高。
二、教材簡析
使用人教版《普通高中課程標準實驗教科書?數學(A版)》,教材在堅持我國數學教育優良傳統的前提下,認真處理繼承、借鑒、發展、創新之間的關系,體現基礎性、時代性、典型性和可接受性等,具有親和力、問題性、科學性、思想性、應用性、聯系性等特點。必修1有三章(集合與函數概念。基本初等函數。函數的應用)。必修2有四章(空間幾何體。點線平面間的位置關系。直線與方程。圓與方程)。
三、教學任務
本期授課內容為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成)。必修2在期末考試前完成(約在12月31日前完成)。
四、教學質量目標
1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,體會數學思想和方法。
2、提高空間想象、抽象概括、推理論證、運算求解、數據處理等基本能力。
3、提高學生提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4、發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5、提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。
6、具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
五、促進目標達成的重點工作及措施
重點工作:
認真貫徹高中數學新課標精神,樹立新的教學理念,以“雙基”教學為主要內容,堅持“抓兩頭、帶中間、整體推進”,使每個學生的數學能力都得到提高和發展。
分層推進措施:
1、重視學生非智力因素培養,要經常性地鼓勵學生,增強學生學習數學興趣,樹立勇于克服困難與戰勝困難的信心。
2、合理引入課題,由數學活動、故事、提問、師生交流等方式激發學生學習興趣,注意從實例出發,從感性提高到理性。注意運用對比的方法,反復比較相近的概念。注意結合直觀圖形,說明抽象的知識。注意從已有的知識出發,啟發學生思考。
3、加強培養學生的邏輯思維能力和解決實際問題的能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯系。加強復習檢查工作。抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環節(引入、探究、例析、反饋),針對不同的教材內容選擇不同教法,提倡創新教學方法,把學生被動接受知識轉化主動學習知識。
6、重視數學應用意識及應用能力的培養。
高一數學教學計劃15
一、具體目標:
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3.提高數學地提出、分析和解決問題(包括簡單的實際問題的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4.發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。
6.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學
二、本學期要達到的教學目標
1.雙基要求:
在基礎知識方面讓學生掌握高一有關的概念、性質、法則、公式、定理以及由其內容反映出來的數學思想和方法。在基本技能方面能按照一定的程序與步驟進行運算、處理數據、能使用計數器及簡單的推理、畫圖。
2.能力培養:
能運用數學概念、思想方法,辨明數學關系,形成良好的思維品質;會根據法則、公式正確的進行運算、處理數據,并能根據問題的情景設計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關學科、生產和生活的數學問題,并進行交流,形成數學的意思;從而通過獨立思考,會從數學的角度發現和提出問題,進行探索和研究。
3. 思想教育:
三、進度授課計劃及進度表(略)
高中是人生中的關鍵階段,大家一定要好好把握高中,編輯老師為大家整理的高中一年級上學期數學教學計劃,希望大家喜歡。
【高一數學教學計劃】相關文章:
高一的數學教學計劃06-07
數學高一教學計劃04-26
高一學生數學教學計劃03-30
高一數學的教學計劃05-25
高一數學-教學計劃04-27
高一數學教學計劃03-07
高一優秀數學教學計劃05-21
高一數學教學計劃08-21
高一數學的教學計劃05-04
高一數學教學計劃05-08