亚洲综合专区|和领导一起三p娇妻|伊人久久大香线蕉aⅴ色|欧美视频网站|亚洲一区综合图区精品

高一數學教學工作計劃

時間:2022-08-02 13:22:35 教學計劃 我要投稿

高一數學教學工作計劃匯編八篇

  日子如同白駒過隙,成績已屬于過去,新一輪的工作即將來臨,此時此刻我們需要開始做一個計劃。相信大家又在為寫計劃犯愁了?以下是小編收集整理的高一數學教學工作計劃8篇,希望對大家有所幫助。

高一數學教學工作計劃匯編八篇

高一數學教學工作計劃 篇1

  一、 指導思想

  使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展和社會進步的需要。具體目標如下:

  1.突出數學基礎知識、基本技能、基本思想方法的培養

  對數學基礎知識和基本技能的培養,要貼近教學實際,既注意全面,又突出重點,注重知識內在聯系以及中學數學中所蘊涵的數學思想方法的培養。

  2.重視數學基本能力的培養

  數學基本能力主要包括空間想象、抽象概括、推理論證、運算求解、數據處理這幾方面的能力。根據高一上學期的內容,側重以下幾個方面:

  (1)運算求解能力是思維能力和運算技能的結合,主要包括數的計算、估算和近似計算,式子的組合變形與分解變形,以及能夠針對問題探究運算方向、選擇運算公式、確定運算程序等。

  (2)抽象概括能力的培養要求是:能夠通過對實例的探究發現研究對象的本質;能夠從給定的信息材料中概括出一些結論,并用于解決問題或做出新的判斷。

  (3)推理論證能力的培養要求是:能夠根據已知的事實和已經獲得的正確的數學命題,運用演繹推理,論證某一數學命題的真假性。

  (4)數據處理能力是指會收集、整理、分析數據,能夠從大量數據中提取對研究問題有用的信息并做出判斷,以解決給定的實際問題。

  3.注重數學的應用意識和創新意識的培養

  培養數學的應用意識,要求能夠運用所學的數學知識、思想和方法,構造數學模型,將一些簡單的實際問題轉化為數學問題,并加以解決。培養學生的創新意識,鼓勵學生創造性地解決問題。

  4.提高學生學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。逐步認識數學的科學價值、應用價值和文化價值,崇尚數學的理性精神,體會數學的美學意義,形成批判性的思維習慣,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

  二、 教材特點

  高一上使用的是人教版《必修1》和《必修4》,這套教材在堅持我國數學教育優良傳統的前提下,認真處理繼承、借鑒、發展、創新的關系,體現了基礎性、時代性、典型性和可接受性等,具有如下特點:

  1. 親和力:以生動活潑的呈現方式,激發學習興趣和美感,每章配有優美的章頭圖和詩一般的引言和富有哲理的數學家名言。

  2. 問題性:每節圍繞問題展開,設置問題情景,培養問題意識,以問題為切入點,形成問題鏈,來組織課堂教學

  3. 思想性和應用性:通過不同數學內容的聯系和啟發,強調類比、推廣、化歸和特殊化等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培養理性精神;取材具有時代感、現實感,加強數學活動,發展應用意識。

  4. 可操作性:教材編寫體例就是以一堂課的全過程展開,易于學生自學、教師編寫教案,大致一節內容占三頁。

  三、 學情分析

  基本狀況:本年級共14個行政班級,其中2個實驗班,12個普通班。學生數共840人,由于初高中分別進行了課改,高中教材與初中教材銜接度遠遠不夠,需在新授的同時適時補充一些內容,因此時間上略緊。同時,因其底子薄弱,教學時必須注重基礎,夯實每個知識點。

  四、 教學措施

  1.加強自我學習,特別是兩個綱領性文件——《普通高中數學課程標準》,《普通高中數學考試大綱》,準確把握教學要求,提高教學效率,不做無用功;

  2.加強集體備課,發動全組同志,確定階段主講人,集思廣益,討論優化教學方案;平行班級統一進度,統一要求,統一作業,統一考試;

  3.認真貫徹教學六認真的要求,精心組織教學,保護學生學習數學的積極性,重視數學學習能力培養;

  4.加強銜接教學,適量打破模塊式教學,使學生得到和諧的發展。

  五、 教學進度

高一數學教學工作計劃 篇2

  一、指導思想:

  我們要培養學生在數學課程教學的基礎上,提高自身的數學素養,滿足個人發展與社會進步的要求。主要目標如下:

  1、掌握主要的數學基礎知識和基本技能,理解基本的數學概念和數學的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。

  2、提高空間想像、抽象概括、推理論證、運算求解、數據處理和數形結合的思想等基本能力。

  3、提高分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。

  4、發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。

  5、提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。

  6、具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

  二、要運用的教學方法

  1、激發學生的學習興趣和信心,引發學生的學習熱情。

  2、用類比,推廣,特殊化,化歸和數形結合的思想等思想方法的運用,培養學生思考問題的方式,提高數學思維能力,培育學生的探究精神。

  3、以具有時代性和現實感的素材創設教學情境,加強數學活動,發展學生的應用意識。選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,以達到培養其興趣的目的。

  4、組織學生思考和探索,改進學生的學習方式。是學生養成有邏輯思維的習慣。

  三、對學生情況的分析

  我現在所教的兩個班的學生的學習基礎不好,自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養其自覺性。班級存在的最大問題是學生的計算能力太差,學生不喜歡去算題,嫌麻煩,特別是遇到復雜點的計算題,學生就怕。因此在以后的教學中,重點在于培養學生的計算能力,同時要進一步提高其思維能力。在教學時要注重基礎知識,爭取每一堂課落實一些知識點,掌握主要的知識點。

  四、所要采取的應對措施:

  1、激發學生的學習興趣。由數學活動、故事等吸引學生的興趣,樹立學生的學習信心,提高學生學習的興趣。

  2、注意從實例出發,注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。

  3、加強培養學生的邏輯思維能力就解決實際問題的能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。

  4、抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。

  5、重視數學應用意識及應用能力的培養。

高一數學教學工作計劃 篇3

  一、指導思想

  學科組是學校教育教學工作中一個基層組織,是學校教學工作的一個重要組成部分。所以我們的一切工作必須圍繞“全面提高學校教學質量”這個中心任務而開展。在抓好教學常規,落實學校各項具體工作同時,認真學習課改綱要,轉變教學理念,積極打造“主動—有效”課堂,實施“精細化與精致化”教學研究,爭取全面提升我校的高中數學教學質量。

  二、工作方向

  (一).積極開展主動-有效課堂教學

  在學校,教育和教學的主陣地在課堂,要使課堂達到有效,離不開充分解放學生的大腦、雙手、嘴巴、眼睛等多種器官,確保學生思維在學習過程中始終于積極活躍主動的狀態,使課堂教學成為一系列學生主體活動的開和整合過程,使得課堂煥發出生命的活力。如果能達到這種效能。課堂教學就能有效、能力提高也能事半功倍。為了達到這個目的,教師應做好幾個“優化”:

  1、優化備課

  (1)科組老師要樹立目標意識,責任意識,主動意識,全局意識。全作意識。

  (2)備課是上好一節課的最重要的環節,備課質量的好壞直接影響課堂效率的高底。怎么備?當然最好是能發揮個人才智、鑄就團體實力。備課組要做到統一目標,統一進度,統一重點與難點,統一作業,統一測練,備課表,備教材,備學生,備教學目標;要求、教學方法、課堂模式、從而確定最佳的教學方案,做到共性與個性的統一。

  總之,不管是集體備課還是個人單獨備課,要達到優化,都要做到心中有課標,心中有資料,心中有教材,心中有重點難點,心中有學生,心中有教學思路,心中有教學方法,心中有教學語言。

  2、優化師生關系

  親其師,信其道。教師必須主動承擔改善師生關系的責任,要尊重學生的勞動,不挖苦、諷刺回答錯誤的學生,提問時應以真誠的眼光注視學生,用親切的語氣啟發學生,用信任的心態引導學生,用虛心的態度聽取學生的建議,及時調整教學策略,營造平等寬松的氛圍,讓學生愉悅地學習,就能取得好的效果。

  3、優化學法指導

  教無定法,學貴得法,現在讓我們頭疼的是學生僅僅是機械的學,被動得再也沒有這樣被動了,我們所取得的效益是大粗放型的。執著——疲憊——心痛循環地伴隨著教師,不擺脫這種狀況,我們就真正很快成為燃燒的昏暗的蠟燭了,燃燒了自己但照不亮別人。因此,我們應該在學法上下功夫,指導學生自學——幫助學生制定自學方案——鼓勵學生提出問題——幫助學生尋求解決問題的方法——精講學生解決不了的問題——補充學生遺留的問題上來優化學生的學法。變被動為主動,便學會為會學。

  4.優化習題練評

  課堂練習是檢驗學生學習情況鞏固學生學習效果,把所學的知識轉化為能力的重要手段。因此精選好課堂練習供學生學習是十分必要的,特別是我們現在要面對全閉卷考試,考察的是學生的記憶能力,分析理解歸納能力,綜合能力,而這些能力的培養和提高,又需要一個很長的過程,所以,平時設計的習題要結合學生的實際情況,有針對性地進行練習,對學生存在的問題,老師要耐心的做好講評點撥工作,使學生循序漸進地提高記憶能力,審題能力,對所學知識的轉換和遷移能力,最后達到提高綜合能力的目的。

  5、優化教學反思

  反思包括教與學的反思。教的反思是指導教師的反思,教師從課堂教學中反思,從測試中反思,不斷總結經驗教訓,提高教學與教研水平。學的反思指的是學生的反思,作為教師要指導學生及時反思自己的學習狀況,改進學習方法,加強師生雙方的反思,將會使教學沿著正確的軌道快速前進。

  以上是我們高一數學組在有效課堂教學中的一些想法,在這個學期的實施中,希望能達到有效高效的效果。

  三:教材分析

  必修(1)分三章,共36課時,第一章,集合與函數(13課時);第二章,基本初等函數(13課時);

  第三章,函數的應用(9課時)。本章中,學生將在第一章學習函數概念的基礎上,通過三個具體的基本初等函數的學習,進一步理解函數的概念與性質,學習用函數模型研究和解決一些實際問題的方法。

  必修(2)包含空間幾何體,點、直線、平面之間的位置關系,直線與方程,圓與方程等四章內容,它們是學習后續必修系列和選修系列的基礎,全書共36課時。

高一數學教學工作計劃 篇4

  教學目標:

  知識與技能通過具體實例了解冪函數的圖象和性質,并能進行簡單的應用.

  過程與方法能夠類比研究一般函數、指數函數、對數函數的過程與方法,來研究冪函數的圖象和性質.

  情感、態度、價值觀體會冪函數的變化規律及蘊含其中的對稱性.

  教學重點:

  重點從五個具體冪函數中認識冪函數的一些性質.

  難點畫五個具體冪函數的圖象并由圖象概括其性質,體會圖象的變化規律.

  教學程序與環節設計:

  材料一:冪函數定義及其圖象.

  一般地,形如 的函數稱為冪函數,其中 為常數.

  冪函數的定義來自于實踐,它同指數函數、對數函數一樣,也是基本初等函數,同樣也是一種形式定義的函數,引導學生注意辨析.

  下面我們舉例學習這類函數的一些性質.

  作出下列函數的圖象:利用所學知識和方法嘗試作出五個具體冪函數的圖象,觀察所圖象,體會冪函數的變化規律.

  定義域

  值域

  奇偶性

  單調性

  定點

  師:引導學生應用畫函數的性質畫圖象,如:定義域、奇偶性.

  師生共同分析,強調畫圖象易犯的錯誤.

  材料二:冪函數性質歸納.

  (1)所有的冪函數在(0,+)都有定義,并且圖象都過點(1,1);

  (2) 時,冪函數的圖象通過原點,并且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;

  (3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨于 時,圖象在 軸上方無限地逼近 軸正半軸.

  例1、求下列函數的定義域;

  例2、比較下列兩個代數值的大小:

  [例3]討論函數 的定義域、奇偶性,作出它的圖象,并根據圖象說明函數的單調性.

  練習

  1.利用冪函數的性質,比較下列各題中兩個冪的值的大小:

  2.作出函數 的圖象,根據圖象討論這個函數有哪些性質,并給出證明.

  3.作出函數 和函數 的圖象,求這兩個函數的定義域和單調區間.

  4.用圖象法解方程:

  1.如圖所示,曲線是冪函數 在第一象限內的圖象,已知 分別取 四個值,則相應圖象依次為:.

  2.在同一坐標系內,作出下列函數的圖象,你能發現什么規律?

高一數學教學工作計劃 篇5

  一 設計思想:

  函數與方程是中學數學的重要內容,是銜接初等數學與高等數學的紐帶,再加上函數與方程還是中學數學四大數學思想之一,是具體事例與抽象思想相結合的體現,在教學過程中,我采用了自主探究教學法。通過教學情境的設置,讓學生由特殊到一般,有熟悉到陌生,讓學生從現象中發現本質,以此激發學生的成就感,激發學生的學習興趣和學習熱情。在現實生活中函數與方程都有著十分重要的應用,因此函數與方程在整個高中數學教學中占有非常重要的地位。

  二 教學內容分析:

  本節課是《普通高中課程標準》的新增內容之一,選自《普通高中課程標準實驗教課書數學I必修本(A版)》第94-95頁的第三章第一課時3.1.1方程的根與函數的的零點。

  本節通過對二次函數的圖象的研究判斷一元二次方程根的存在性以及根的個數的判斷建立一元二次方程的根與相應的二次函數的零點的聯系,然后由特殊到一般,將其推廣到一般方程與相應的函數的情形.它既揭示了初中一元二次方程與相應的二次函數的內在聯系,也引出對函數知識的總結拓展。之后將函數零點與方程的根的關系在利用二分法解方程中(3.1.2)加以應用,通過建立函數模型以及模型的求解(3.2)更全面地體現函數與方程的關系,逐步建立起函數與方程的聯系.滲透“方程與函數”思想。

  總之,本節課滲透著重要的數學思想“特殊到一般的歸納思想”“方程與函數”和“數形結合”的思想,教好本節課可以為學好中學數學打下一個良好基礎,因此教好本節是至關重要的。

  三 教學目標分析:

  知識與技能:

  1.結合方程根的幾何意義,理解函數零點的定義;

  2.結合零點定義的探究,掌握方程的實根與其相應函數零點之間的等價關系;

  3.結合幾類基本初等函數的圖象特征,掌握判斷函數的零點個數和所在區間 的方法

  情感、態度與價值觀:

  1.讓學生體驗化歸與轉化、數形結合、函數與方程這三大數學思想在解決數學問題時的意義與價值;

  2.培養學生鍥而不舍的探索精神和嚴密思考的良好學習習慣;

  3.使學生感受學習、探索發現的樂趣與成功感

  教學重點:函數零點與方程根之間的關系;連續函數在某區間上存在零點的判定方法。

  教學難點:發現與理解方程的根與函數零點的關系;探究發現函數存在零點的方法。

  四 教學準備

  導學案,自主探究,合作學習,電子交互白板。

  五 教學過程設計:

  (一)、問題引人:

  請同學們思考這個問題。用屏幕顯示判斷下列方程是否有實根,有幾個實根?

  (1)

  ;(2)

  ?

  學生活動:回答,思考解法。

  教師活動:第二個方程我們不會解怎么辦?你是如何思考的?有什么想法?我們可以考慮將復雜問題簡單化,將未知問題已知化,通過對第一個問題的研究,進而來解決第二個問題。對于第一個問題大家都習慣性地用代數的方法去解決,我們應該打破思維定勢,走出自己給自己畫定的牢籠!這樣我們先把所依賴的拐杖丟掉,假如第一個方程你不會解,也不會應用判別式,你要怎樣判斷其實根個數呢?

  學生活動:思考作答。

  設計意圖:通過設疑,讓學生對高次方程的根產生好奇。

  (二)、概念形成:

  預習展示1:

  你能通過觀察二次方程的根及相應的二次函數圖象,找出方程的根,圖象與軸交點的坐標以及函數零點的關系嗎?

  學生活動:觀察圖像,思考作答。

  教師活動:我們來認真地對比一下。用投影展示學生填寫表格

一元二次方程







方程的根







二次函數







函數的圖象







(簡圖)







圖象與軸交點的坐標







函數的零點








?
???

?
???

?
???

  問題1:你能通過觀察二次方程的根及相應的二次函數圖象,找出方程的根,圖象與

  軸交點的坐標以及函數零點的關系嗎?

  學生活動:得到方程的實數根應該是函數圖象與x軸交點的橫坐標的結論。

  教師活動:我們就把使方程 成立的實數x稱做函數的零點.(引出零點的概念)

  根據零點概念,提出問題,零點是點嗎?零點與函數方程的根有何關系?

  學生活動:經過觀察表格,得出(請學生總結)

  1)概念:函數的零點并不是“點”,它不是以坐標的形式出現,而是實數。例如函數的零點為x=-1,3

  2)函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標.

  3)方程有實數根函數的圖象與軸有交點函數有零點。

  教師活動:引導學生仔細體會上述結論。

  再提出問題:如何并根據函數零點的意義求零點?

  學生活動:可以解方程而得到(代數法);

  可以利用函數的圖象找出零點.(幾何法).

  設計意圖:由學生最熟悉的二次方程和二次函數出發,發現一般規律,并嘗試的去總結零點,根與交點三者的關系。

  (三)、探究性質:

  (五)、探索研究(可根據時間和學生對知識的接受程度適當調整)

  討論:請大家給方程的一個解的大約范圍,看誰找得范圍更小?

  [師生互動]

  師:把學生分成小組共同探究,給學生足夠的自主學習時間,讓學生充分研究,發揮其主觀能動性。也可以讓各組把這幾個題做為小課題來研究,激發學生學習潛能和熱情。老師用多媒體演示,直觀地演示根的存在性及根存在的區間大小情況。

  生:分組討論,各抒己見。在探究學習中得到數學能力的提高

  第五階段設計意圖:

  一是為用二分法求方程的近似解做準備

  二是小組探究合作學習培養學生的創新能力和探究意識,本組探究題目就是為了培養學生的探究能力,此組題目具有較強的開放性,探究性,基本上可以達到上述目的。

  (六)、課堂小結:

  零點概念

  零點存在性的判斷

  零點存在性定理的應用注意點:零點個數判斷以及方程根所在區間

  (七)、鞏固練習(略)

高一數學教學工作計劃 篇6

  一、學情分析

  這節課是在學生已經學過的二維的平面直角坐標系的基礎上的推廣,是以后學習空間向量等內容的基礎。

  二、教學目標

  1. 讓學生經歷用類比的數學思想方法探索空間直角坐標系的建立方法,進一步體會數學概念、方法產生和發展的過程,學會科學的思維方法。

  2. 理解空間直角坐標系與點的坐標的意義,掌握由空間直角坐標系內的點確定其坐標或由坐標確定其在空間直角坐標系內的點,認識空間直角坐標系中的點與坐標的關系。

  3. 進一步培養學生的空間想象能力與確定性思維能力。

  三、教學重點:在空間直角坐標系中點的坐標的確定。

  四、教學難點:通過建立空間直角坐標系利用點的坐標來確定點在空間內的位置

  五、教學過程

  (一)、問題情景

  1. 確定一個點在一條直線上的位置的方法。

  2. 確定一個點在一個平面內的位置的方法。

  3. 如何確定一個點在三維空間內的位置?

  例:如圖,在房間(立體空間)內如何確定一個同學的頭所在位置?

  在學生思考討論的基礎上,教師明確:確定點在直線上,通過數軸需要一個數;確定點在平面內,通過平面直角坐標系需要兩個數。那么,要確定點在空間內,應該需要幾個數呢?通過類比聯想,容易知道需要三個數。要確定同學的頭的位置,知道同學的頭到地面的距離、到相鄰的兩個墻面的距離即可。

  (此時學生只是意識到需要三個數,還不能從坐標的角度去思考,因此,教師在這兒要重點引導)

  教師明晰:在地面上建立直角坐標系xOy,則地面上任一點的位置只須利用x,y就可確定。為了確定不在地面內的電燈的位置,須要用第三個數表示物體離地面的高度,即需第三個坐標z.因此,只要知道電燈到地面的距離、到相鄰的兩個墻面的距離即可。例如,若這個電燈在平面xOy上的射影的兩個坐標分別為4和5,到地面的距離為3,則可以用有序數組(4,5,3)確定這個電燈的位置(如圖26-3)。

  這樣,仿照初中平面直角坐標系,就建立了空間直角坐標系O-xyz,從而確定了空間點的位置。

  (二)、建立模型

  1. 在前面研究的基礎上,先由學生對空間直角坐標系予以抽象概括,然后由教師給出準確的定義。

  從空間某一個定點O引三條互相垂直且有相同單位長度的數軸,這樣就建立了空間直角坐標系O-xyz,點O叫作坐標原點,x軸、y軸、z軸叫作坐標軸,這三條坐標軸中每兩條確定一個坐標平面,分別稱為xOy平面,yOz平面,zOx平面。

  教師進一步明確:

  (1)在空間直角坐標系中,讓右手拇指指向x軸的正方向,食指指向y軸的正方向,若中指指向z軸的正方向則稱這個坐標系為右手坐標系,課本中建立的坐標系都是右手坐標系。

  (2)將空間直角坐標系O-xyz畫在紙上時,x軸與y軸、x軸與z軸成135,而y軸垂直于z軸,y軸和z軸的單位長度相等,但x軸上的單位長度等于y軸和z軸上的單位長度的 ,這樣,三條軸上的'單位長度直觀上大致相等。

  2. 空間直角坐標系O-xyz中點的坐標。

  思考:在空間直角坐標系中,空間任意一點A與有序數組(x,y,z)有什么樣的對應關系?

  在學生充分討論思考之后,教師明確:

  (1)過點A作三個平面分別垂直于x軸,y軸,z軸,它們與x軸、y軸、z軸分別交于點P,Q,R,點P,Q,R在相應數軸上的坐標依次為x,y,z,這樣,對空間任意點A,就定義了一個有序數組(x,y,z)。

  (2)反之,對任意一個有序數組(x,y,z),按照剛才作圖的相反順序,在坐標軸上分別作出點P,Q,R,使它們在x軸、y軸、z軸上的坐標分別是x,y,z,再分別過這些點作垂直于各自所在的坐標軸的平面,這三個平面的交點就是所求的點A.

  這樣,在空間直角坐標系中,空間任意一點A與有序數組(x,y,z)之間就建立了一種一一對應關系:A (x,y,z)。

  教師進一步指出:空間直角坐標系O-xyz中任意點A的坐標的概念

  對于空間任意點A,作點A在三條坐標軸上的射影,即經過點A作三個平面分別垂直于x軸、y軸和z軸,它們與x軸、y軸、z軸分別交于點P,Q,R,點P,Q,R在相應數軸上的坐標依次為x,y,z,我們把有序數組(x,y,z)叫作點A的坐標,記為A(x,y,z)。

  (三)、例 題 與 練 習

  1. 課本135頁例1.

  注意:在分析中緊扣坐標定義,強調三個步驟,第一步從原點出發沿x軸正方向移動5個單位,第二步沿與y軸平行的方向向右移動4個單位,第三步沿與z軸平行的方向向上移動6個單位(如圖26-5)。

  2. 課本135頁例2

  探究: (1)在空間直角坐標系中,坐標平面xOy,xOz,yOz上點的坐標有什么特點?

  (2)在空間直角坐標系中,x軸、y軸、z軸上點的坐標有什么特點?

  解:(1)xOy平面、xOz平面、yOz平面內的點的坐標分別形如(x,y,0),(x,0,z),(0,y,z)。

  (2)x軸、y軸、z軸上點的坐標分別形如(x,0,0),(0,y,0),(0,0,z)。

  3. 已知長方體ABCD-ABCD的邊長AB=12,AD=8,AA=5,以這個長方體的頂點A為坐標原點,射線AB,AD,AA分別為x軸、y軸和z軸的正半軸,建立空間直角坐標系,求這個長方體各個頂點的坐標。

  注意:此題可以由學生口答,教師點評。

  解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。

  討論:若以C點為原點,以射線CB,CD,CC方向分別為x,y,z軸的正半軸,建立空間直角坐標系,那么各頂點的坐標又是怎樣的呢?

  得出結論:建立不同的坐標系,所得的同一點的坐標也不同。

  [練 習]

  1. 在空間直角坐標系中,畫出下列各點:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。

  2. 已知:長方體ABCD-ABCD的邊長AB=12,AD=8,AA=7,以這個長方體的頂點B為坐標原點,射線AB,BC,BB分別為x軸、y軸和z軸的正半軸,建立空間直角坐標系,求這個長方體各個頂點的坐標。

  3. 寫出坐標平面yOz上yOz平分線上的點的坐標滿足的條件。

  (四)、拓展延伸

  分別寫出點(1,1,1)關于各坐標軸和各個坐標平面對稱的點的坐標。

  六、評價設計

  1、 練習 : 課本P136. 1、2、3

  2、 課堂作業: 課本P138. 1、2

高一數學教學工作計劃 篇7

  教學目標

  1通過對冪函數概念的學習以及對冪函數圖象和性質的歸納與概括,讓學生體驗數學概念的形成過程,培養學生的抽象概括能力。

  2使學生理解并掌握冪函數的圖象與性質,并能初步運用所學知識解決有關問題,培養學生的靈活思維能力。

  3培養學生觀察、分析、歸納能力。了解類比法在研究問題中的作用。

  教學重點、難點

  重點:冪函數的性質及運用

  難點:冪函數圖象和性質的發現過程

  教學方法:問題探究法 教具:多媒體

  教學過程

  一、創設情景,引入新課

  問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數p(元)和購買的水果量w(千克)之間有何關系?

  (總結:根據函數的定義可知,這里p是w的函數)

  問題2:如果正方形的邊長為a,那么正方形的面積 ,這里S是a的函數。 問題3:如果正方體的邊長為a,那么正方體的體積 ,這里V是a的函數。 問題4:如果正方形場地面積為S,那么正方形的邊長 ,這里a是S的函數 問題5:如果某人 s內騎車行進了 km,那么他騎車的速度 ,這里v是t的函數。

  以上是我們生活中經常遇到的幾個數學模型,你能發現以上幾個函數解析式有什么共同點嗎?(右邊指數式,且底數都是變量) 這只是我們生活中常用到的一類函數的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數位置,解析式右邊都是冪的形式)(適當引導:從自變量所處的位置這個角度)(引入新課,書寫課題)

  二、新課講解

  由學生討論,(教師可提示p=w可看成p=w1)總結,即可得出:p=w, s=a2, a=s , v=t-1都是自變量的若干次冪的形式。

  教師指出:我們把這樣的都是自變量的若干次冪的形式的函數稱為冪函數。

  冪函數的定義:一般地,我們把形如 的函數稱為冪函數(power function),其中 是自變量, 是常數。 1冪函數與指數函數有什么區別?(組織學生回顧指數函數的概念) 結論:冪函數和指數函數都是我們高中數學中研究的兩類重要的基本初等函數,從它們的解析式看有如下區別: 對冪函數來說,底數是自變量,指數是常數 對指數函數來說,指數是自變量,底數是常數 例1判別下列函數中有幾個冪函數?

  ① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由學生獨立思考、回答)

  2冪函數具有哪些性質?研究函數應該是哪些方面的內容。前面指數函數、對數函數研究了哪些內容?

  (學生討論,教師引導。學生回答。)

  3冪函數的定義域是否與對數函數、指數函數一樣,具有相同的定義域?

  (學生小組討論,得到結論。引導學生舉例研究。結論:冪指數 不同,定義域并不完全相同,應區別對待。)教師指出:冪函數y=xn中,當n=0時,其表達式y=x0=1;定義域為(-∞,0)U(0,+∞),特別強調,當x為任何非零實數時,函數的值均為1,圖象是從點(0,1)出發,平行于x軸的兩條射線,但點(0,1)要除外。)

  例2寫出下列函數的定義域,并指出它們的奇偶性:①y=x ②y= ③y=x ④y=x

  (學生解答,并歸納解決辦法。引導學生與指數函數、對數函數對照比較。引導學生具體問題具體分析,并作簡單歸納:分數指數應化成根式,負指數寫成正數指數再寫出定義域。冪函數的奇偶性也應具體分析。)

  4上述函數①y=x ②y= ③y=x ④y=x 的單調性如何?如何判斷?

  (學生思考,引導作圖可得。并加上y=x 和y=x-1圖象)接下來, 在同一坐標系中學生作圖,教師巡視。將學生作圖用實物投影儀演示,指出優點和錯誤之處。教師利用幾何畫板演示。見后附圖1

  讓學生觀察圖象,看單調性、以及還有哪些共同點?(學生思考,回答。教師注意學生敘述的嚴密性。)

  教師總評:冪函數的性質

  (1)所有的冪函數在(0,+∞)上都有定義,并且圖象都過點(1,1),

  (2)如果a>0,則冪函數的圖象通過原點,并在區間[0,+∞)上是增函數,

  (3)如果a<0,則冪函數在(0,+∞)上是減函數,在第一區間內,當x從右邊趨向于原點時,圖象在y軸右方無限地趨近y軸;當x趨向于+∞,圖象在x軸上方無限地趨近x軸。

  5通過觀察例1,在冪函數y=xa中,當a是(1)正偶數、(2)正奇數時,這一類函數有哪種性質?

  學生思考,教師講評:(1)在冪函數y=xa中,當a是正偶數時,函數都是偶函數,在第一象限內是增函數。(2)在冪函數y=xa中,當a是正奇數時,函數都是奇函數,在第一象限內是增函數。

  例3鞏固練習 寫出下列函數的定義域,并指出它們的奇偶性和單調性:①y=x ②y=x ③y=x 。

  例4簡單應用1:比較下列各組中兩個值的大小,并說明理由:

  ①0.75 ,0.76 ;

  ②(-0.95) ,(-0.96) ;

  ③0.23 ,0.24 ;

  ④0.31 ,0.31

  例5簡單應用2:冪函數y=(m -3m-3)x 在區間 上是減函數,求m的值。

  例6簡單應用2:

  已知(a+1)<(3-2a) ,試求a的取值范圍。

  課堂小結

  今天的學習內容和方法有哪些?你有哪些收獲和經驗?

  1、 冪函數的概念及其指數函數表達式的區別 2、 常見冪函數的圖象和冪函數的性質。

布置作業:

  課本p.73 2、3、4、思考5

高一數學教學工作計劃 篇8

  本學期的措施及打算

  1.一周學習早知道。明確目標更能確定努力的方向。為了讓學生學習更有目的性,有效性和積極性,每周第一節課給出一周的教學進度,學習目標和過關要求。不僅老師要做到對所教內容清楚明了,也要讓學生對所學內容做到每周學習目標清晰化。

  2.落實“每周測試”過關制。周測內容與一周學習目標及一周的講授內容緊密相連。未盡力而又沒有過關的學生將按事先說明的措施給予處罰。以便讓學生重視課堂學習,重視平時作業,重視一周的學習過程。做到讓學生每周學習過程精細化。

  3.根據學生學力狀況進行分層次的培優補差。

  三、教學進度安排

  周次學習內容目標要求

  1必修4 第一章三角函數:第1至3節周期,角的推廣及表示,弧度制及互化

  2軍訓

  3第4節:正弦函數單位圓,正弦函數定義,象限符號,誘導公式,五點法畫圖像,圖像及性質。

  4第5節:余弦函數,第6節正切函數余弦函數正切函數定義,象限符號,誘導公式,圖像及性質

  5第7節: 的圖像,第8節:同角的基本關系。圖像變換規律,同角三角函數的基本關系及其運用。章節復習,章節過關測試。

  6第二章:平面向量:第1節至第2節向量,有向線段,向量的長及相等、平行、共線、單位向量等概念,向量的加減法運算

  7第3節至第5節數乘向量,基本定理,向量運算的鞏固訓練,平面向量的坐標表示及運算。數量積的應用。

  8第5節至第7節數量積的應用及坐標表示,向量應用舉例。習題課,章節復習,章節過關測試。

  9第三章:三角恒等變換:第1節至第2節兩角和差的公式得推導,記憶及靈活運用,二倍角公式得來源及運用。期中復習。

  10期中考試期中復習,期中考試。

  11第三章第3節:三角函數的簡單應用試卷講評改錯,簡單應用,三角恒等變換的綜合習題課,練習,章節復習,必修4基本測試。

  12“五。一”長假

  13必修3第一章:統計。第1節至第5節統計的程序,統計圖,統計方案設計,普查與抽樣,抽樣方法,分層抽樣與系統抽樣,花統計圖表及讀統計圖表,數字特征:平均數,中位數,眾數,級差,方差的意義及計算分析,

  14第6節至第9節樣本對總本的估計及相應的數字特征的計算分析,統計實踐活動,變量的相關性及例題分析,最小二乘估計。章節復習,章節過關測試。

  15第二章:算法初步:第1節至第3節基本思想,基本結構及設計,排序問題。

  16第4節:幾種基本語句條件語句,循環語句,復習三角函數的基本內容,章節復習,三角函數與算法初步過關測試。

  17第三章:概率:第1節至第2節頻率,概率,古典概率,概率計算公式。

  18第2節至第3節建概率模型,互斥事件,習題課,章節復習,章節過關測試。

  19期末復習

  20期末復習,期末考試

【高一數學教學工作計劃】相關文章:

數學高一教學工作計劃01-26

關于高一數學教學的工作計劃10-15

數學高一教學工作計劃06-30

高一數學的教學工作計劃04-01

高一數學教學工作計劃01-11

高一數學教學工作計劃11-12

高一數學教學個人工作計劃07-29

上學期高一數學教學的工作計劃10-17

高一數學教學工作計劃11-11

高一數學教學工作計劃12-12