高二數學教學計劃范文匯編六篇
日子如同白駒過隙,又迎來了一個全新的起點,是時候開始制定計劃了。好的計劃都具備一些什么特點呢?以下是小編整理的高二數學教學計劃6篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
高二數學教學計劃 篇1
一、指導思想:
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足于基礎知識和基本技能的教學,注重滲透數學思想和方法。立足學生的實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力于培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
二、學生基本情況分析:
1、基本情況:高二10個理科班,4個文科班,每個班的學生對數學學習各不相同。其中,1—6班為實驗班,大部分人,基礎較好,數學學習興趣較為濃厚。還有些學生對自己學習數學的信心不足,學習積極性和主動性不夠,大部分學生學習上只滿足完成老師所布置的任務,對于靈活運用知識分析問題、解決問題的能力還不夠強,不能舉一反三進一步挖深問題,在選例題時盡量選中等難度題目,以適應大多數學生的適應能力。
三、教學目標
針對以上問題的出現,在本學期擬訂以下目標和措施。其具體目標如下:
1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3、提高數學的提出、分析和解決問題的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4、提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。
四、教法分析:
1、選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,以達到培養其興趣的目的。
2、通過“觀察”,“思考”,“探究”等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。
3、在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養成其邏輯思維的習慣。
五、教學措施:
1、抓好課堂教學,提高教學效益。 課堂教學是教學的主要環節,因此,抓好課堂教學是教學之根本,是提高數學成績的主要途徑。
①認真落實,搞好集體備課。每周至少進行一次集體備課,星期一的上午升旗后至第二節課結束。每位老師都要提前一周進行單元式的備課,集體備課時,由兩名老師作主要發言人,對下一周的教材內容作分析,然后大家研究討論其中的重點、難點、教學方法等。
②加大課堂教改力度,培養學生的自主學習能力。最有效的學習是自主學習,因此,課堂教學要大力培養學生自主探究的精神,逐步形成知識體系,提高能力。同時要養成學生良好的學習習慣,不斷提高學生的數學素養,從而提高數學素養,并大面積提高數學成績。
2、加強課外輔導,提高競爭能力。 課外輔導是課堂的有力補充,是提高數學成績的有力手段。
①加強學習方法的指導,全方面提高他們的數學能力,特別是自主能力,并通過強化訓練,不斷提高解題能力,使他們的數學成績更上一層樓。
②加強對雙差生的輔導。雙差生是一個班級教學成敗的關鍵,因此,我將下大力氣輔導雙差生,通過個別或集體的方法進行耐性教學,從而使他們的紀律以及數學成績有一定的進步。
3、搞好單元考試、階段性考試的分析。學生只有通過不斷的練習才能提高成績,單元考試、階段性考試是最好的練習,每次都要做好分析,并指導學生糾錯。在分析過程中要遵循自主的思維習慣,使學生真正理解。
六、教學進度安排
本學期授課時間約為20周,本學期的教學任務:
第一學段:數學必修3;
第二學段:理科2-1。另完成選修4—5,和選修4—4的教學任務,保證完成教學任務。
高二數學教學計劃 篇2
一,教學內容
這學期按照教育局教研室的要求,教學任務比較重。選修1-1,第三章《導數》,根據教研室的計劃,應該安排在春節前。鑒于期末考試臨近,這一章沒有學習,所以這學期的教學內容有以下幾個部分:選修1-1 《導數》,選修1-2,共四章《統計案例》,《推理與證明》,《數系的擴充與復數的引入》。
二,教學策略
根據年山東省高考數學(文科)大綱的要求,應及時調整教學計劃,切實重視學生學習的實施,讓學生的學習成為有效的勞動。精心備課,精心指導,針對目標學生不放松,努力使目標學生數學成績有效,積極交流,提高教學水平,同時認真學習《框圖》,學習新課程,應用新課程。
第三,具體措施
這學期我主要從以下幾個方面做好教學工作:
1、注重學習計劃指導學習,善用好學案例。注重研究老師如何說話,就是注重研究學生如何學習。
2.盡量分層次做作業,尤其是加餐,提高尖子生的學習成績。
3.特別注意學生作業的落實,不定時查看學生的集錦和作業本。
4.組織單位通過,做好試卷講評工作。
5.積極溝通目標學生的想法和感受
高二數學教學計劃 篇3
教學目標:
1. 知識與技能目標:
(1)了解中國古代數學中求兩個正整數最大公約數的算法以及割圓術的算法;
(2)通過對“更相減損之術”及“割圓術”的學習,更好的理解將要解決的問題“算法化”
的思維方法,并注意理解推導“割圓術”的操作步驟。
2. 過程與方法目標:
(1)改變解決問題的思路,要將抽象的數學思維轉變為具體的步驟化的思維方法,提高邏
輯思維能力;
(2)學會借助實例分析,探究數學問題。
3. 情感與價值目標:
(1)通過學生的主動參與,師生,生生的合作交流,提高學生興趣,激發其求知欲,培養探索精神;
(2)體會中國古代數學對世界數學發展的貢獻,增強愛國主義情懷。
教學重點與難點:
重點:了解“更相減損之術”及“割圓術”的算法。
難點:體會算法案例中蘊含的算法思想,利用它解決具體問題。
教學方法:
通過典型實例,使學生經歷算法設計的全過程,在解決具體問題的過程中學習一些基本邏輯
結構,學會有條理地思考問題、表達算法,并能將解決問題的過程整理成程序框圖。
教學過程:
教學
環節 教學內容 師生互動 設計意圖
創設 情境
引入新課 引導學生回顧
人們在長期的生活,生產和勞動過程中,創造了整數,分數,小數,正負數及其計算,以及無限逼近任一實數的方法,在代數學,幾何學方面,我國在宋,元之前也都處于世界的前列。我們在小學,中學學到的算術,代數,從記數到多元一次聯立方程的求根方法,都是我國古代數學家最先創造的。更為重要的是我國古代數學的發展有著自己鮮明的特色,也就是“寓理于算”,即把解決的問題“算法化”。本章的內容是算法,特別是在中國古代也有著很多算法案例,我們來看一下并且進一步體會“算法”的概念。
教師引導,學生回顧。
教師啟發學生回憶小學初中時所學算術代數知識,共同創設情景,引入新課。
通過對以往所學數學知識的回顧,使學生理清知識脈絡,并且向學生指明,我國古代數學的發展“寓理于算”,不同于西方數學,在今天看仍然有很大的優越性,體會中國古代數學對世界數學發展的貢獻,增強愛國主義情懷。
閱讀課本 探究新知
1. 求兩個正整數最大公約數的算法
學生通常會用輾轉相除法求兩個正整數的最大公約數:
例1:求78和36的最大公約數
(1) 利用輾轉相除法
步驟:
計算出78 36的余數6,再將前面的除數36作為新的被除數,36 6=6,余數為0,則此時的除數即為78和36的最大公約數。
理論依據: ,得 與 有相同的公約數
(2) 更相減損之術
指導閱讀課本P ----P ,總結步驟
步驟:
以兩數中較大的數減去較小的數,即78-36=42;以差數42和較小的數36構成新的一對數,對這一對數再用大數減去小數,即42-36=6,再以差數6和較小的數36構成新的一對數,對這一對數再用大數減去小數,即36-6=30,繼續這一過程,直到產生一對相等的數,這個數就是最大公約數
即,理論依據:由 ,得 與 有相同的公約數
算法: 輸入兩個正數 ;
如果 ,則執行 ,否則轉到 ;
將 的值賦予 ;
若 ,則把 賦予 ,把 賦予 ,否則把 賦予 ,重新執行 ;
輸出最大公約數
程序:
a=input(“a=”)
b=input(“b=”)
while a<>b
if a>=b
a=a-b;
else
b=b-a
end
end
print(%io(2),a,b)
學生閱讀課本內容,分析研究,獨立的解決問題。
教師巡視,加強對學生的個別指導。
由學生回答求最大公約數的兩種方法,簡要說明其步驟,并能說出其理論依據。
由學生寫出更相減損法和輾轉相除法的算法,并編出簡單程序。
教師將兩種算法同時顯示在屏幕上,以方便學生對比。
教師將程序顯示于屏幕上,使學生加以了解。 數學教學要有學生根據自己的經驗,用自己的思維方式把要學的知識重新創造出來。這種再創造積累和發展到一定程度,就有可能發生質的飛躍。在教學中應創造自主探索與合作交流的學習環境,讓學生有充分的時間和空間去觀察,分析,動手實踐,從而主動發現和創造所學的數學知識。
求兩個正整數的最大公約數是本節課的一個重點,用學生非常熟悉的問題為載體來講解算法的有關知識,,強調了提供典型實例,使學生經歷算法設計的全過程,在解決具體問題的過程中學習一些基本邏輯結構,學會有條理地思考問題、表達算法,并能將解決問題的過程整理成程序框圖。為了能在計算機上實現,還適當展示了將自然語言或程序框圖翻譯成計算機語言的內容。總的來說,不追求形式上的嚴謹,通過案例引導學生理解相應內容所反映的數學思想與數學方法。
高二數學教學計劃 篇4
本章是高考命題的主體內容之一,應切實進行全面、深入地復習,并在此基礎上,突出解決下述幾個問題:(1)等差、等比數列的證明須用定義證明,值得注意的是,若給出一個數列的前 項和 ,則其通項為 若 滿足 則通項公式可寫成 .(2)數列計算是本章的中心內容,利用等差數列和等比數列的通項公式、前 項和公式及其性質熟練地進行計算,是高考命題重點考查的內容.(3)解答有關數列問題時,經常要運用各種數學思想.善于使用各種數學思想解答數列題,是我們復習應達到的目標. ①函數思想:等差等比數列的通項公式求和公式都可以看作是 的函數,所以等差等比數列的某些問題可以化為函數問題求解.
②分類討論思想:用等比數列求和公式應分為 及 ;已知 求 時,也要進行分類;
③整體思想:在解數列問題時,應注意擺脫呆板使用公式求解的思維定勢,運用整
體思想求解.
(4)在解答有關的數列應用題時,要認真地進行分析,將實際問題抽象化,轉化為數學問題,再利用有關數列知識和方法來解決.解答此類應用題是數學能力的綜合運用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關的等比數列的第幾項不要弄錯.
一、基本概念:
1、 數列的定義及表示方法:
2、 數列的項與項數:
3、 有窮數列與無窮數列:
4、 遞增(減)、擺動、循環數列:
5、 數列的通項公式an:
6、 數列的前n項和公式Sn:
7、 等差數列、公差d、等差數列的結構:
8、 等比數列、公比q、等比數列的結構:
二、基本公式:
9、一般數列的通項an與前n項和Sn的關系:an=
10、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d0時,an是關于n的一次式;當d=0時,an是一個常數。
11、等差數列的前n項和公式:Sn= Sn= Sn=
當d0時,Sn是關于n的二次式且常數項為0;當d=0時(a10),Sn=na1是關于n的正比例式。
12、等比數列的通項公式: an= a1 qn-1 an= ak qn-k
(其中a1為首項、ak為已知的第k項,an0)
13、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關于n的正比例式);
當q1時,Sn= Sn=
三、有關等差、等比數列的結論
14、等差數列的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍為等差數列。
15、等差數列中,若m+n=p+q,則
16、等比數列中,若m+n=p+q,則
17、等比數列的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍為等比數列。
18、兩個等差數列與的和差的數列、仍為等差數列。
19、兩個等比數列與的積、商、倒數組成的數列
、 、 仍為等比數列。
20、等差數列的任意等距離的項構成的數列仍為等差數列。
21、等比數列的任意等距離的項構成的數列仍為等比數列。
22、三個數成等差的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d
23、三個數成等比的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3
24、為等差數列,則 (c0)是等比數列。
25、(bn0)是等比數列,則 (c0且c 1) 是等差數列。
四、數列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。關鍵是找數列的通項結構。
26、分組法求數列的和:如an=2n+3n
27、錯位相減法求和:如an=(2n-1)2n
28、裂項法求和:如an=1/n(n+1)
29、倒序相加法求和:
30、求數列的最大、最小項的方法:
① an+1-an= 如an= -2n2+29n-3
② an=f(n) 研究函數f(n)的增減性
31、在等差數列 中,有關Sn 的最值問題常用鄰項變號法求解:
(1)當 0時,滿足 的項數m使得 取最大值.
(2)當 0時,滿足 的項數m使得 取最小值。
在解含絕對值的數列最值問題時,注意轉化思想的應用。
以上就是高二數學學習:高二數學數列的所有內容,希望對大家有所幫助!
高二數學教學計劃 篇5
一、學生基本情況
261班共有學生75人,268班共有學生72人。268班學習數學的氣氛較濃,但由于高一函數部分基礎特別差,對高二乃至整個高中的數學學習有很大的影響,數學成績尖子生多或少,但若能雜實復習好函數部分,加上學生又很努力,將來前途無量。若能好好的引導,進一步培養他們的學習興趣。
二、高二下冊數學教學要求
(一)情意目標
(1)通過分析問題的方法的教學、通過不等式的一題多解、多題一解、不等式的一題多證,培養學生的學習的興趣。
(2)提供生活背景,使學生體驗到不等式、直線、圓、圓錐曲線就在身邊,培養學數學用數學的意識。
(3)在探究不等式的性質、圓錐曲線的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識 (4)基于情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗“發現——挫折——矛盾——頓悟——新的發現”這一科學發現歷程的幻妙多姿
(二)能力要求
1、培養學生記憶能力。
(1)在對不等式的性質、平均不等式及思維方法與邏輯模式的學習中,進一步培養記憶能力。做到記憶準確、持久,用時再現得迅速、正確。
(2)通過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養對數學本質問題的背景事實及具體數據的記憶。 (3)通過揭示解析幾何有關概念、公式和圖形直觀值見的對應關系,培養記憶能力。
2、培養學生的運算能力。
(1)通過解不等式及不等式組的'訓練,培養學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。
(3)通過解析法的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數形結合,另辟蹊徑,提高學生運算能力。
3、培養學生的思維能力。
(1)通過含參不等式的求解,培養學生思維的周密性及思維的邏輯性。
(2)通過解析幾何與不等式的一題多解、多題一解、通過不等式的一題多證,培養思維的靈活性和敏捷性,發展發散思維能力。
(3)通過不等式引伸、推廣,培養學生的創造性思維。
(4)加強知識的橫向聯系,培養學生的數形結合的能力。
(5)通過解析幾何的概念教學,培養學生的正向思維與逆向思維的能力。
(6)通過典型例題不同思路的分析,培養思維的靈活性,是學生掌握轉化思想方法。
4、培養學生的觀察能力。
(1)在比較鑒別中,提高觀察的準確性和完整性。
(2)通過對個性特征的分析研究,提高觀察的深刻性。
(三)知識要求
1、掌握不等式的概念、性質及證明不等式的方法,不等式的解法;
2、通過直線與圓的教學,使學生了解解析幾何的基本思想,掌握直線方程的幾種形式及位置關系,掌握簡單線性規劃問題,掌握曲線方程、圓的概念。
3、掌握橢圓、雙曲線、拋物線的定義、方程、圖形及性質。
三、高二下冊數學教材簡要分析
1、不等式的主要內容是:不等式性質、不等式證明、不等式解法。不等式性質是基礎,不等式證明是在其基礎上進行的;不等式的解法是在這一基礎上、依據不等式的性及同解變形來完成的。不等式在整個高中數學中是一個重要的工具,是培養運算能力、邏輯思維能力的強有力載體。
2、直線是最簡單的幾圖形,是學習圓錐曲線、導數和微分等知識的的基礎。,是直線方程的一個直接應用。主要內容有:直線方程的幾種形式,線性規劃的初步知識,兩直線的位置關系,圓的方程;斜率是最重要的概念,斜率公式是最重要的公式,直線與圓是數形結合解析幾何相互為用思想的載體。
3、圓錐曲線包括橢圓、雙曲線、拋物線的定義,標準方程,簡單幾何性質,以及它們在實際中的一些運用。橢圓、雙曲線、拋物線分別是滿足某些條件的點的軌跡,由這些條件可以求出它們的方程,并通過分析標準方程研究它們的性質。
四、高二下冊數學重點與難點
(一)重點
1、不等式的證明、解法。
2、直線的斜率公式,直線方程的幾種形式,兩直線的位置關系,圓的方程。
3、橢圓、雙曲線、拋物線的定義,標準方程,簡單幾何性質。
(二)難點
1、含絕對值不等式的解法,不等式的證明。
2、到角公式,點到直線距離公式的推導,簡單線性規劃的問題的解法。
3、用坐標法研究幾何問題,求曲線方程的一般方法。
五、高二下冊數學教學措施
1、教學中要傳授知識與培育能力相結合,充分調動學生學習的主動性,培育學生的概括能力,是學生掌握數學基本方法、基本技能。
2、堅持與高三聯系,切實面向高考,以五大數學思想為主線,有目的、有計劃、有重點,避免面面俱到,減輕學生的學習負擔。
3、加強教育教學研究,堅持學生主體性原則,堅持循序漸進原則,堅持啟發性原則。研究并采用以“發現式教學模式”為主的教學方法,全面提高教學質量。
4、積極參加與組織集體備課,共同研究,努力提高授課質量
5、堅持向同行聽課,取人所長,補己之短。相互研究,共同進步。
6、堅持學法研討,加強個別輔導(差生與優生),提高全體學生的整體數學水平,培育尖子學生。 7、加強數學研究課的教學研究指導,培養學識的動手能力。
六、高二下冊數學教學進度表
日期 周次 節/周 教學內容(課時)
3月1日~3月7日 1 5 一元二次不等式(組)與簡單的線性規劃(5)
8日~14日 2 6 基本不等式(3)測試與講評(3)
15日~21日 3 6 命題及其關系(3),充分條件與必要條件(2),簡單邏輯連接詞(1)
22日~28日 簡單邏輯連接詞(2),全稱量詞與存在量詞(2),復習(2)
29日~4月5日 5 6 曲線與方程(2),橢圓(4)
6日~12日 6 6 橢圓(2),雙曲線(4)
13日~19日 7 6 ,拋物線(4),復習(2)
20日~26日 8 6 空間向量及其運算(5),立體幾何中的向量方法(1)
27日~5月2日 9 6 立體幾何中的向量方法(4),小結與復習(2)
3日~9日 10 6 期中考試
10日~16日 11 6 ,段考講評(2),變化率與導數(4)
17日~23日 12 6 導數的計算(2)導數在研究函數中的應用(4)
24日~30日 13 6 生活中的優化問題舉例(4),定積分的概念(2)
6月1日~7日 14 6 定積分的概念(2),微積分基本定理(2)、定積分的簡單應用(2)
8日~14日 15 6 復習與測試(4),合情推理與演繹推理(2)
15日~21日 16 6 合情推理與演繹推理(2)、直接證明與間接證明(4)
22日~28日 17 6 數學歸納法(3),復習(3)
29日~7月4日 18 6 數系的擴充和復數的概念(3)、復數代數形式的四則運算(3)
5日~11日 19 6 期末復習(6)
12日~13日 20 6 期末考試
高二數學教學計劃 篇6
一、學情分析:
本學期我負責的是1班和6班的數學教學工作,這兩個班級共有學生78人。6班學習數學的氣氛較濃,但由于高一函數部分基礎特別差,對高二乃至整個高中的數學學習有很大的影響,數學成績尖子生多或少,但若能雜實復習好函數部分,加上學生又很努力,將來前途無量。若能好好的引導,進一步培養他們的學習興趣。
二、教材分析:
1、不等式的主要內容是:不等式性質、不等式證明、不等式解法。不等式性質是基礎,不等式證明是在其基礎上進行的;不等式的解法是在這一基礎上、依據不等式的性及同解變形來完成的。不等式在整個高中數學中是一個重要的工具,是培養運算能力、邏輯思維能力的強有力載體。
2、直線是最簡單的幾圖形,是學習圓錐曲線、導數和微分等知識的的基礎。,是直線方程的一個直接應用。主要內容有:直線方程的幾種形式,線性規劃的初步知識,兩直線的位置關系,圓的方程;斜率是最重要的概念,斜率公式是最重要的公式,直線與圓是數形結合解析幾何相互為用思想的載體。
3、圓錐曲線包括橢圓、雙曲線、拋物線的定義,標準方程,簡單幾何性質,以及它們在實際中的一些運用。橢圓、雙曲線、拋物線分別是滿足某些條件的點的軌跡,由這些條件可以求出它們的方程,并通過分析標準方程研究它們的性質。
三、教學的重點與難點:
(一)重點
1、不等式的證明、解法。
2、直線的斜率公式,直線方程的幾種形式,兩直線的位置關系,圓的方程。
3、橢圓、雙曲線、拋物線的定義,標準方程,簡單幾何性質。
(二)難點
1、含絕對值不等式的解法,不等式的證明。
2、到角公式,點到直線距離公式的推導,簡單線性規劃的問題的解法。
3、用坐標法研究幾何問題,求曲線方程的一般方法。
四、教學目標:
(一)情意目標
(1)通過分析問題的方法的教學、通過不等式的一題多解、多題一解、不等式的一題多證,培養學生的學習的興趣。
(2)提供生活背景,使學生體驗到不等式、直線、圓、圓錐曲線就在身邊,培養學數學用數學的意識。
(3)在探究不等式的性質、圓錐曲線的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基于情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗“發現——挫折——矛盾——頓悟——新的發現”這一科學發現歷程的幻妙多姿
(二)能力要求
1、培養學生記憶能力。
(1)在對不等式的性質、平均不等式及思維方法與邏輯模式的學習中,進一步培養記憶能力。做到記憶準確、持久,用時再現得迅速、正確。
(2)通過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養對數學本質問題的背景事實及具體數據的記憶。
(3)通過揭示解析幾何有關概念、公式和圖形直觀值見的對應關系,培養記憶能力。
2、培養學生的運算能力。
(1)通過解不等式及不等式組的訓練,培養學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。 (3)通過解析法的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。 (4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。 (5)利用數形結合,另辟蹊徑,提高學生運算能力。
3、培養學生的思維能力。
(1)通過含參不等式的求解,培養學生思維的周密性及思維的邏輯性。
(2)通過解析幾何與不等式的一題多解、多題一解、通過不等式的一題多證,培養思維的靈活性和敏捷性,發展發散思維能力。
(3)通過不等式引伸、推廣,培養學生的創造性思維。
(4)加強知識的橫向聯系,培養學生的數形結合的能力。
(5)通過解析幾何的概念教學,培養學生的正向思維與逆向思維的能力。
(6)通過典型例題不同思路的分析,培養思維的靈活性,是學生掌握轉化思想方法。
4、培養學生的觀察能力。
(1)在比較鑒別中,提高觀察的準確性和完整性。
(2)通過對個性特征的分析研究,提高觀察的深刻性。
(三)知識要求
1、掌握不等式的概念、性質及證明不等式的方法,不等式的解法;
2、通過直線與圓的教學,使學生了解解析幾何的基本思想,掌握直線方程的幾種形式及位置關系,掌握簡單線性規劃問題,掌握曲線方程、圓的概念。
3、掌握橢圓、雙曲線、拋物線的定義、方程、圖形及性質。
五、教學措施:
1、積極參加與組織集體備課,共同研究,努力提高授課質量
2、堅持向同行聽課,取人所長,補己之短。相互研究,共同進步。
3、堅持學法研討,加強個別輔導(差生與優生),提高全體學生的整體數學水平,培育尖子學生。
4、加強數學研究課的教學研究指導,培養學識的動手能力。
5、教學中要傳授知識與培育能力相結合,充分調動學生學習的主動性,培育學生的概括能力,是學生掌握數學基本方法、基本技能。
6、堅持與高三聯系,切實面向高考,以五大數學思想為主線,有目的、有計劃、有重點,避免面面俱到,減輕學生的學習負擔。
7、加強教育教學研究,堅持學生主體性原則,堅持循序漸進原則,堅持啟發性原則。研究并采用以“發現式教學模式”為主的教學方法,全面提高教學質量。
六、課時安排:
本學期共81課時
1、不等式18課時
2、直線與圓的方程25課時
3、圓錐曲線20課時
4、研究課18課時。
【高二數學教學計劃范文匯編六篇】相關文章:
高二數學教學計劃(集合15篇)01-19
高二上學期數學教學計劃匯編7篇12-23
高二上學期數學教學計劃范文7篇12-28
小學的數學教學計劃范文03-21
高二化學上學期教學計劃范文03-22
高二教師學期教學計劃五篇范文01-15
初二數學的教學計劃范文03-22
教師需要的數學教學計劃范文01-17
英語高二教學計劃01-10
數學教師教學計劃匯編15篇12-25