初二數學教案
作為一名無私奉獻的老師,通常需要準備好一份教案,教案是實施教學的主要依據,有著至關重要的作用。我們應該怎么寫教案呢?以下是小編收集整理的初二數學教案 ,歡迎大家借鑒與參考,希望對大家有所幫助。
初二數學教案 1
教學目標
1.知道梯形、等腰梯形、直角梯形的有關概念;能說出并證明等腰梯形的兩個性質;等腰梯形同一底上的兩個角相等;兩條對角線相等。
2.會運用梯形的有關概念和性質進行有關問題的論證和計算。
3.通過添加輔助線,把梯形的問題轉化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉化的思想。
教學模式問題解決教學
教學過程
想一想:
什么樣的四邊形是平行四邊形?平行四邊形有哪些性質?學生回答后,教師板書以下關系圖中的有關部分:
畫一畫:
畫一個梯形,并指出梯形的上、下底,畫出梯形的高。
問題教學
問題1:根據剛才的畫圖,請給梯形下一個定義,并說說梯形與平行四邊形的區別和聯系。(說明與建議:(l)讓學生自己給梯形下定義,有助于訓練學生觀察、概括和語言表述的能力。如果學生定義時,遺漏了"另一組對邊不平行"教師可舉及例(2)對梯形的定義,還可以讓學生討論以下問題:一組對邊平行且這組對邊不相等的四邊形是梯形嗎?為什么?教師可用反證法的思想說理。然后,板書完成"想一想"中的關系圖,并結合圖表指出:梯形和平行四邊形的區別和聯系。(3)梯形的高是指夾在兩底間的公垂線段,在計算面積時高即為上下兩底(平行線)間的距離,也就是夾在兩底間的公垂線段的長度。畫高時可以從上底任一點向下底作垂線段,一般常從上底的兩端向下底作垂線段可方便地構造直角三角形,便于計算。)
問題2:如圖4.9-1,在(1)中:四邊形ABCD的AD∥BC,ABCD,且CD⊥BC;在(2)中,四邊形ABCD的AD∥BC,ABCD,且AB=CD。請你給這兩種四邊形命名。(說明與建議:學生說出圖(l)的四邊形是直角梯形,圖(2)是等腰梯形,通常不會有困難;教師應進一步引導學生討論,在圖(1)中CD⊥BC,那么CD⊥AD嗎?(CD⊥AD,且指出:CD就是直角梯形的高)當CD⊥BC時,另一腰AB可以垂直BC嗎?為什么?(若AB⊥BC,那么四邊形ABCD就成為矩形了,不再是梯形。)在圖(2)中,上底AD與下底BC能相等嗎?(不能,否則四邊形ABCD成為平行四邊形,不再是梯形。)
練一練:課本例1后練習第l、2題。
問題3:觀察圖4.9-2中的等腰梯形ABCD,猜想它還可能具有哪些特殊性質。并能證明你的猜想嗎?
說明與建議:(l)教師要用微笑、點頭、贊嘆、激勵的表情和話語來鼓勵學生大膽猜想。(2)學生可能提出以下猜想:∠B=∠C,∠A=∠D,∠A+∠B=,∠C+∠D=,是軸對稱圖形等等。教師要引導學生關注等腰梯形特有的性質---等腰梯形的底角相等。(3)如何證明這個猜想,可讓學生自己思考、探索、交流,教師給以引導,鼓勵證明多樣化,如課本第174頁的證法。教師可提醒學生證明過程中用到了"夾在平行線間的平行線段相等"這一性質。并指出:這種證法的實質是把一腰平移,從而構造出等腰三角形;對于如圖4.9-2(作AE⊥BC,DF⊥BC)所示的證法,教師可指出:通過作梯形的兩條高,可以構造出兩個全等的直三角形等。
問題4:如何證明等腰梯形是軸對稱圖形呢?(說明與建議:可讓學生用折紙的方法,確認等腰梯形是軸對稱圖形;教學中,還可引導學生借助等腰三角形的軸對稱性加以證明,如圖4.9-3,延長等腰梯形兩腰BA、CD相交于點E,易證△AED和△EBC都是等腰三角形。EF⊥BC,則EF⊥AD,EF所在的直線是兩個等腰三角形EAD、EBC的對稱軸。由軸對稱圖形可知,也是等腰梯形ABCD的對稱軸。因此,等腰梯形是軸對稱圖形,有一條對稱軸,是過兩底中點的直線。)
例題解析(課本例1)說明:本例的結論,為學生在討論"問題3"時已提及,則可由學生自已完成證明,并概括成為一個文字命題。如學生討論問題3時未提及,則可由教師引導學生猜想,然后再完成證明。
課堂練習1.課本例1后練習第3題。2.如圖4.9-4,已知等腰梯形ABCD的腰長為5cm,上、下底長分別是6cm和12cm,求梯形的面積。(方法一,過點C作CE∥AD,再作等腰三角形BCE的高CF,可知CF=4cm。然后用梯形面積公式求解;方法二,過點C和D分別作高CF、DG,可知,從而在Rt△AGD中求出高DG=4cm。)
初二數學教案 2
1。教材分析
(1)知識結構:
(2)重點和難點分析:
重點:四邊形的有關概念及內角和定理。因為四邊形的有關概念及內角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用。
難點:四邊形的概念及四邊形不穩定性的理解和應用。在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現在研究的是平面圖形,所以在四邊形的定義中加上在同一平面內這個條件,這幾個字的意思學生不好理解,所以是難點。
2。教法建議
(1)本節的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發學生學習數學的興趣。
(2)本節的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內角、外角、內角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉化為三角形問題來解決。結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節用到的數學思想方法是化歸轉化的思想和類比的思想,教師在講解本節知識時要滲透這兩種思想方法,并且在本節小結中對這兩種數學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉化為簡單的、已知的問題。
一、素質教育目標
(一)知識教學點
1。使學生掌握四邊形的有關概念及四邊形的內角和外角和定理。
2。了解四邊形的不穩定性及它在實際生產,生活中的應用。
(二)能力訓練點
1。通過引導學生觀察氣象站的實例,培養學生從具體事物中抽象出幾何圖形的能力。
2。通過推導四邊形內角和定理,對學生滲透化歸思想。
3。會根據比較簡單的條件畫出指定的四邊形。
4。講解四邊形外角概念和外角定理時,聯系三角形的有關概念對學生滲透類比思想。
(三)德育滲透點
使學生認識到這些四邊形都是常見的,研究他們都有實際應用意義,從而激發學生學習新知識的興趣。
(四)美育滲透點
通過四邊形內角和定理數學,滲透統一美,應用美。
二、學法引導
類比、觀察、引導、講解
三、重點難點疑點及解決辦法
1。教學重點:四邊形及其有關概念;熟練推導四邊形外角和這一結論,并用此結論解決與四邊形內外角有關計算問題。
2。教學難點:理解四邊形的有關概念中的一些細節問題;四邊形不穩定性的理解和應用。
3。疑點及解決辦法:四邊形的定義中為什么要有在平面內,而三角形的定義中就沒有呢?根據指定條件畫四邊形,關鍵是要分析好作圖的順序,一般先作一個角。
四、課時安排
2課時
五、教具學具準備
投影儀、膠片、四邊形模型、常用畫圖工具
六、師生互動活動設計
教師引入新課,學生觀察圖形,類比三角形知識導出四邊形有關概念;師生共同推導四邊形內角和的定理,學生鞏固內角和定理和應用;共同分析探索外角和定理,學生閱讀相關材料。
第一課時
七、教學步驟
【復習引入】
在小學里已經對四邊形、長方形、平形四邊形的有關知識有所了解,但還很膚淺,這一
章我們將比較系統地學習各種四邊形的性質和判定分析它們之間的關系,并運用有關四邊形的知識解決一些新問題。
【引入新課】
用投影儀打出課前畫好的教材中P119的圖。
師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發學生找上述圖形,最后教師用彩色筆勾出幾個圖形)。
【講解新課】
1。四邊形的有關概念
結合圖形講解四邊形,四邊形的邊、頂點、角,凸四邊形,四邊形的對角線(同時學生在書上畫出上述概念),講解這些概念時:
(1)要結合圖形。
(2)要與三角形類比。
(3)講清定義中的關鍵詞語。如四邊形定義中要說明為什么加上同一平面內而三角形的定義中為什么不加同一平面內(三角形的三個頂點一定在同一平面內,而四個點有可能不在同一平面內,如圖42中的點 。我們現在只研究平面圖形,故在定義中加上在同一平面內的限制)。
(4)強調四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉化為三角形來解(滲透化歸思想),并觀察圖4—3用對角線分成的這些三角形與原四邊形的關系。
(5)強調四邊形的表示方法,一定要按頂點順序書寫四邊形如圖41。
(6)在判斷一個四邊形是不是凸四邊形時,一定要按照定義的要求把每一邊都延長后再下結論如圖4—4,圖4—5。
2。四邊形內角和定理
教師問:
(1)在圖4—3中對角線AC把四邊形ABCD分成幾個三角形?
(2)在圖4—6中兩條對角線AC和BD把四邊形分成幾個三角形?
(3)若在四邊形ABCD如圖4—7內任取一點O,從O向四個頂點作連線,把四邊形分成幾個三角形。
我們知道,三角形內角和等于180,那么四邊形的內角和就等于:
①2180=360如圖4
②4180—360=360如圖4—7。
例1 已知:如圖48,直線 于B、 于C。
求證:(1) (2) 。
本例題是四邊形內角和定理的應用,實際上它證明了兩邊相互垂直的兩個角相等或互補的關系,何時用相等,何時用互補,如果需要應用,作兩三步推理就可以證出。
【總結、擴展】
1。四邊形的有關概念。
2。四邊形對角線的作用。
3。四邊形內角和定理。
八、布置作業
教材P128中1(1)、2、 3。
九、板書設計
四邊形(一)
四邊形有關概念
四邊形內角和
例1
十、隨堂練習
教材P122中1、2、3。
初二數學教案 3
一、教學目標
1.掌握矩形的定義,知道矩形與平行四邊形的關系.
2.掌握矩形的性質定理.
3.使學生能應用矩形定義、性質等知識,解決簡單的證明題和計算題,進一步培養學生的分析能力.
4.通過性質的學習,體會矩形的應用美.
二、教法設計
觀察、啟發、總結、提高,類比探討,討論分析,啟發式.
三、重點、難點及解決辦法
1.教學重點:矩形的性質及其推論.
2.教學難點:矩形的本質屬性及性質定理的綜合應用.
四、課時安排
1課時
五、教具學具準備
教具(一個活動的平行四邊形),投影儀及膠片,常用畫圖工具
六、師生互動活動設計
教具演示、創設情境,觀察猜想,推理論證
七、教學步驟
【復習提問】
什么叫平行四邊形?它和四邊形有什么區別?
【引入新課】
我們已經知道平行四邊形是特殊的四邊形,因此平行四邊形除具有四邊形的性質外,還有它的特殊性質,同樣對于平行四邊形來說,也有特殊情況即特殊的平行四邊形, 堂課我們就來研究一種特殊的平行四邊形矩形(寫出課題).
【講解新課】
制一個活動的平行四邊形教具,堂上進行演示圖,使學生注意觀察四邊形角的變化,當變到一個角是直角時,指出這時平行四邊形是矩形,使學生明確矩形是特殊的平行四邊形(特殊之處就在于一個角是直角,深刻理解矩形與平行四邊形的聯系和區別).
矩形的性質:
既然矩形是一種特殊的平行四邊形,就應具有平行四邊形性質,同時矩形又是特殊的平行四邊形,比平行四邊形多了一個角是直角的條件,因而它就增加了一些特殊性質.
繼續演示教具,當它變成矩形時,學生容易看到它的四個角都是直角;它的對角線也相等(寫出這兩個結論),指出觀察出來的結論不能做為定理,需要證明.引導學生利用平行四邊形角的性質證明得出.
矩形性質定理1:矩形的四個角都是直角.
矩形性質定理2:矩形對角線相等.
由矩形性質定理2我們可以得到
推論:直角三角形斜邊上的中線等于斜邊的一半.
(這實際上是 △的一個重要性質,即 △斜邊中點到三頂點的距離相等,它在求線段長或線段部分關系時經常用到)
例1 已知如圖1 矩形 的兩條對角線相交于點, , ,求矩形對角線的長.(按教材的格式)
(強調這種計算題的解題格式,防止學生離開幾何元素之間的關系,而單純進行代數計算)
【總結、擴展】
1.小結:(用投影打出)
(1)矩形、平行四邊形、四邊形從屬關系如圖.
(2)矩形性質.
1.具有平行四邊形的所有性質.
2.特有性質:四個角都是直角,對角線相等.
3.思考題:已知如圖, 是矩形 對角線交點, 平分 , ,求 的度數
八、布置作業
教材P158中2、5,P195中7.
九、板書設計
十、隨堂練習
教材P146中1、2、3、4
初二數學教案 4
教學目標:
1、經歷用數格子的辦法探索勾股定理的過程,進一步發展學生的合情推力意識,主動探究的習慣,進一步體會數學與現實生活的緊密聯系。
2、探索并理解直角三角形的三邊之間的數量關系,進一步發展學生的說理和簡單的推理的意識及能力。
重點難點:
重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。
難點:勾股定理的發現
教學過程
一、創設問題的情境,激發學生的學習熱情,導入課題
出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數學家)在勾股定理方面的貢獻。
出示投影2(書中的P2圖1—2)并回答:
1、觀察圖1-2,正方形A中有_______個小方格,即A的面積為______個單位。
正方形B中有_______個小方格,即A的面積為______個單位。
正方形C中有_______個小方格,即A的面積為______個單位。
2、你是怎樣得出上面的結果的?在學生交流回答的基礎上教師直接發問:
3、圖1—2中,A,B,C之間的面積之間有什么關系?
學生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A.B,C的關系呢?
二、做一做
出示投影3(書中P3圖1—4)提問:
1、圖1—3中,A,B,C之間有什么關系?
2、圖1—4中,A,B,C之間有什么關系?
3、從圖1—1,1—2,1—3,1|—4中你發現什么?
學生討論、交流形成共識后,教師總結:
以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。
三、議一議
1、圖1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?
2、你能發現直角三角形三邊長度之間的'關系嗎?
在同學的交流基礎上,老師板書:
直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”
也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c
那么
我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。
3、分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規律,對這個三角形仍然成立嗎?(回答是肯定的:成立)
四、想一想
這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?
五、鞏固練習
1、錯例辨析:
△ABC的兩邊為3和4,求第三邊
解:由于三角形的兩邊為3、4
所以它的第三邊的c應滿足=25
即:c=5
辨析:(1)要用勾股定理解題,首先應具備直角三角形這個必不可少的條件,可本題
△ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據。
(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊
綜上所述這個題目條件不足,第三邊無法求得。
2、練習P7§1.11
六、作業
課本P7§1.12、3、4
初二數學教案 5
教學設計思想:
本節主要學習了平行四邊形的幾種判定方法,以及平行四邊形性質、判定的應用——三角形的中位線定理。通過問題情境引入平行四邊形判定的研究,首先通過直觀猜測判定的方法,再次通過幾何證明來證明它的正確性。充分發揮學生的主觀能動性。
教學目標
知識與技能:
1.總結出平行四邊形的三種判定方法;
2.應用平行四邊形的判定解決實際問題;
3.應用平行四邊形的性質與判定得出三角形中位線定理;
4.總結三角形與平行四邊形的相互轉化,學會基本的添輔助線法。
過程與方法:
1.經歷平行四邊形判別條件的探索過程,逐步掌握說理的基本方法。
2.經歷探究三角形中位線定理的過程,體會轉化思想在數學中的重要性。
情感態度價值觀:
1.在探究活動中,發展合情推理意識,養成主動探究的習慣;
2.通過探索式證明法開拓思路,發展思維能力;
3.在解決平行四邊形問題的過程中,不斷滲透轉化思想。
教學重難點
重點:1.平行四邊形的判別條件;2.應用平行四邊形的性質和判定得出三角形中位線定理。
難點:1.靈活應用平行四邊形的判別條件;2.合理添加輔助線;3.三角形與平行四邊形之間的合理轉化。
教學方法
小組討論、合作探究
課時安排
3課時
教學媒體
課件、
教學過程
第一課時
(一)引入
師:上節課我們已經知道了平行四邊形的邊、角及對角線所具有的性質,請同學們回憶一下都有哪些?
初二數學教案 6
一、教學目標
1.了解分式、有理式的概念。
2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件。
二、重點、難點
1.重點:理解分式有意義的條件,分式的值為零的條件。
2.難點:能熟練地求出分式有意義的條件,分式的值為零的條件。
3。認知難點與突破方法
難點是能熟練地求出分式有意義的條件,分式的值為零的條件。突破難點的方法是利用分式與分數有許多類似之處,從分數入手,研究出分式的有關概念,同時還要講清分式與分數的聯系與區別。
三、例、習題的意圖分析
本章從實際問題引出分式方程=,給出分式的描述性的定義:像這樣分母中含有字母的式子屬于分式。不要在列方程時耽誤時間,列方程在這節課里不是重點,也不要求解這個方程。
1.本節進一步提出P4[思考]讓學生自己依次填出:。為下面的[觀察]提供具體的式子,就以上的式子,有什么共同點?它們與分數有什么相同點和不同點?
可以發現,這些式子都像分數一樣都是(即A÷B)的形式。分數的分子A與分母B都是整數,而這些式子中的A、B都是整式,并且B中都含有字母。
P5[歸納]順理成章地給出了分式的定義。分式與分數有許多類似之處,研究分式往往要類比分數的有關概念,所以要引導學生了解分式與分數的聯系與區別。
希望老師注意:分式比分數更具有一般性,例如分式可以表示為兩個整式相除的商(除式不能為零),其中包括所有的分數。
2.P5[思考]引發學生思考分式的分母應滿足什么條件,分式才有意義?由分數的分母不能為零,用類比的方法歸納出:分式的分母也不能為零。注意只有滿足了分式的分母不能為零這個條件,分式才有意義。即當B≠0時,分式才有意義。
3.P5例1填空是應用分式有意義的條件—分母不為零,解出字母x的值。還可以利用這道題,不改變分式,只把題目改成“分式無意義”,使學生比較全面地理解分式及有關的概念,也為今后求函數的自變量的取值范圍,打下良好的基礎。
4.P12[拓廣探索]中第13題提到了“在什么條件下,分式的值為0?”,下面補充的例2為了學生更全面地體驗分式的值為0時,必須同時滿足兩個條件:1分母不能為零;2分子為零。這兩個條件得到的解集的公共部分才是這一類題目的解。
四、課堂引入
1.讓學生填寫P4[思考],學生自己依次填出:
2.學生看P3的問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?
請同學們跟著教師一起設未知數,列方程。
設江水的流速為x千米/時。
初二數學教案 7
教學目標
知識與技能目標
1.經歷平行四邊形判別條件的探索過程,發現平行四邊形的常用判別條件。
2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。
3.逐步掌握說理的基本方法。
過程與方法目標
1.在探索平行四邊形的判別條件的過程中,發展學生的合情推理意識,主動探索的習慣。
2.鼓勵學生用多種方法進行說理。
情感與態度目標
1.培養學生探索創新的能力,開拓學生思路,發展學生的思維能力。
2.培養學生合作學習,增強學生的自我評價意識。
教材分析
教材通過創設“釘制平行四邊形框架”這一情境,便于學生發現和探索平行四邊形的常用判別方法。如有條件可要求學生自己準備,由學生自我操作。也可由教師演示。
教學重點:平行四邊形的判別方法。
教學難點:利用平行四邊形的判別方法進行正確的說理。
學情分析
初二學生對平面圖形的認識能力正在形成,抽象思維還不夠,學習幾何知識處于現象描述和說理的過渡時期。因此,對這部分內容的學習,要引導學生學會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質定理。
教學流程
一、創設情境,引入新課
師:請同學們拿出課前準備的小木條,幫助小明的爸爸釘制平行四邊形的框架。
學生活動:學生按小組進行探索。
初二數學教案 8
教學目標
1、初步掌握頻率分布直方圖的概念,能繪制有關連續型統計量的直方圖;
2、讓學生進一步經歷數據的整理和表示的過程,掌握繪制頻率分布直方圖的方法;
教學重點
掌握頻率分布直方圖概念及其應用;
教學難點
繪制連續統計量的直方圖
教學過程
Ⅰ.提出問題,創設情境,引入新課:
問題:我們班準備從63名同學中挑選出身高相差不多的40名同學參加比賽,那么這個想法可以實現嗎?應該選擇身高在哪個范圍的學生參加?
63名學生的身高數據如下:
158158160168159159151158159
168158154158154169158158158
159167170153160160159159160
149163163162172161153156162
162163157162162161157157164
155156165166156154166164165
156157153165159157155164156
解:(確定組距)最大值為172,最小值為149,他們的差為23
(身高x的變化范圍在23厘米,)
(分組劃記)頻數分布表:
身高(x)劃記頻數(學生人數)
149≤x<1522
152≤x<1556
155≤x<15812
158≤x<16119
161≤<16410
164≤x<1678
167≤x<1704
170≤x<1732
從表中看,身高在155≤x<158,158≤x<161,161≤<164三組人最多,共41人,所以可以從身高在155~164cm(不含164cm)之間的學生中選隊員
(繪制頻數分布直方圖如課本P72圖12.2-3)
探究:上面對數據分組時,組距取3,把數據分成8個組,如果組距取2或4,那么數據應分成幾個組,這樣做能否選出身高比較整齊的隊員?
分析:如果組距取2,那么分成12組;如果組距取4,那么分成6組。都可以選出身高比較整齊的隊員。
歸納:組距和組數的確定沒有固定的標準,要憑借經驗和研究的具體問題來決定,通常數據越多,分成的組數也越多,當數據在100個以內時,根據數據的多少通常分為5~12個組。
我們還可以用頻數折線圖來描述頻數分布的情況。頻數折線圖可以在頻數分布直方圖的基礎上畫出來。
首先取直方圖中每一個長方形上邊的中草藥點,然后在橫軸上取兩個頻數為0的點,在上方圖的左邊取(147、5,0),在直方圖的右邊取點(174、5,0),將這些點用線段依次連接起來,就得到頻數折線圖。
頻數折線圖也可以不通過直方圖直接畫出。
根據表12.2-2,求了各個小組兩個端點的平均數,而這些平均數稱為組中值,用橫軸表示身高(組中值),用縱軸表示頻數,以各小組的組中值為橫坐標,各小組對應的頻數為縱坐標描點,另外再在橫軸上取兩個點,依次連接這些點,就得到頻數分布折線圖如課本P73圖。
II課堂小結:
(1)怎樣制作頻數分布直方圖和頻數分布折線圖
(2)組距和組數沒有確定標準,當數據在1000個以內時,通常分成5~12組
(3)如果取個長方形上邊的中點,可以得到頻數折線圖
(4)求各小組兩個斷點的平均數,這些平均數叫組中值。
初二數學教案 9
一、利用勾股定理進行計算
1.求面積
例1:如圖1,在等腰△ABC中,腰長AB=10cm,底BC=16cm,試求這個三角形面積。
析解:若能求出這個等腰三角形底邊上的高,就可以求出這個三角形面積。而由等腰三角形"三線合一"性質,可聯想作底邊上的高AD,此時D也為底邊的中點,這樣在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以這個三角形面積為×BC×AD=×16×6=48cm2。
2.求邊長
例2:如圖2,在△ABC中,∠C=135?,BC=,AC=2,試求AB的長。
析解:題中沒有直角三角形,不能直接用勾股定理,可考慮過點B作BD⊥AC,交AC的延長線于D點,構成Rt△CBD和Rt△ABD。在Rt△CBD中,因為∠ACB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根據勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。
點評:這兩道題有一個共同的特征,都沒有現成的直角三角形,都是通過添加適當的輔助線,巧妙構造直角三角形,借助勾股定理來解決問題的,這種解決問題的方法里蘊含著數學中很重要的轉化思想,請同學們要留心。
二、利用勾股定理的逆定理判斷直角三角形
例3:已知a,b,c為△ABC的三邊長,且滿足a2+b2+c2+338=10a+24b+26c。試判斷△ABC的形狀。
析解:由于所給條件是關于a,b,c的一個等式,要判斷△ABC的形狀,設法求出式中的a,b,c的值或找出它們之間的關系(相等與否)等,因此考慮利用因式分解將所給式子進行變形。因為a2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因為(a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因為52+122=132,所以a2+b2=c2,即△ABC是直角三角形。
點評:用代數方法來研究幾何問題是勾股定理的逆定理的"數形結合思想"的重要體現。
三、利用勾股定理說明線段平方和、差之間的關系
例4:如圖3,在△ABC中,∠C=90?,D是AC的中點,DE⊥AB于E點,試說明:BC2=BE2-AE2。
析解:由于要說明的是線段平方差問題,故可考慮利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可連結BD來解決。因為∠C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中點,所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。
點評:若所給題目的已知或結論中含有線段的平方和或平方差關系時,則可考慮構造直角三角形,利用勾股定理來解決問題。
初二數學教案 10
初二上冊數學知識點總結:等腰三角形
一、等腰三角形的性質:
1、等腰三角形兩腰相等.
2、等腰三角形兩底角相等(等邊對等角)。
3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.
4、等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。
5、等邊三角形的性質:
①等邊三角形三邊都相等.
②等邊三角形三個內角都相等,都等于60°
③等邊三角形每條邊上都存在三線合一.
④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條).
6.基本判定:
⑴等腰三角形的判定:
①有兩條邊相等的三角形是等腰三角形.
②如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊).
⑵等邊三角形的判定:
①三條邊都相等的三角形是等邊三角形.
②三個角都相等的三角形是等邊三角形.
③有一個角是60°的等腰三角形是等邊三角形.
初二數學教案 11
教學目標:
知識與技能
1.掌握直角三角形的判別條件,并能進行簡單應用;
2.進一步發展數感,增加對勾股數的直觀體驗,培養從實際問題抽象出數學問題的能力,建立數學模型.
3.會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論.
情感態度與價值觀
敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識.
教學重點
運用身邊熟悉的事物,從多種角度發展數感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論.
教學難點
會辨析哪些問題應用哪個結論.
課前準備
標有單位長度的細繩、三角板、量角器、題篇
教學過程:
復習引入:
請學生復述勾股定理;使用勾股定理的前提條件是什么?
已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?
創設問題情景:由課前準備好的一組學生以小品的形式演示教材第9頁古埃及造直角的方法.
這樣做得到的是一個直角三角形嗎?
提出課題:能得到直角三角形嗎
講授新課:
⒈如何來判斷?(用直角三角板檢驗)
這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關系?
就是說,如果三角形的三邊為,,,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當滿足較小兩邊的平方和等于較大邊的平方時)
⒉繼續嘗試:下面的三組數分別是一個三角形的三邊長a,b,c:
5,12,13;6,8,10;8,15,17.
(1)這三組數都滿足a2+b2=c2嗎?
(2)分別以每組數為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?
⒊直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.
滿足a2+b2=c2的三個正整數,稱為勾股數.
⒋例1一個零件的形狀如左圖所示,按規定這個零件中∠A和∠DBC都應為直角.工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?
隨堂練習:
⒈下列幾組數能否作為直角三角形的三邊長?說說你的理由.
⑴9,12,15;⑵15,36,39;
⑶12,35,36;⑷12,18,22.
⒉已知?ABC中BC=41,AC=40,AB=9,則此三角形為_______三角形,______是角.
⒊四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積.
⒋習題1.3
課堂小結:
⒈直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.
⒉滿足a2+b2=c2的三個正整數,稱為勾股數.勾股數擴大相同倍數后,仍為勾股數.
初二數學教案 12
教學建議
知識結構:
重點難點分析:
是商的二次根式的性質及利用性質進行二次根式的化簡與運算,利用分母有理化化簡.商的算術平方根的性質是本節的主線,學生掌握性質在二次根使得化簡和運算的運用是關鍵,從化簡與運算由引出初中重要的內容之一分母有理化,分母有理化的理解決定了最簡二次根式化簡的掌握.
教學難點是二次根式的除法與商的算術平方根的關系及應用.二次根式的除法與乘法既有聯系又有區別,強調根式除法結果的一般形式,避免分母上含有根號.由于分母有理化難度和復雜性大,要讓學生首先理解分母有理化的意義及計算結果形式.
教法建議:
1. 本節內容是在有積的二次根式性質的基礎后學習,因此可以采取學生自主探索學習的模式,通過前一節的復習,讓學生通過具體實例再結合積的性質,對比、歸納得到商的二次根式的性質.教師在此過程中給與適當的指導,提出問題讓學生有一定的探索方向.
2. 本節內容可以分為三課時,第一課時討論商的算術平方根的性質,并運用這一性質化簡較簡單的二次根式(被開方數的分母可以開得盡方的二次根式);第二課時討論二次根式的除法法則,并運用這一法則進行簡單的二次根式的除法運算以及二次根式的乘除混合運算,這一課時運算結果不包括根號出現內出現分式或分數的情況;第三課時討論分母有理化的概念及方法,并進行二次根式的乘除法運算,把運算結果分母有理化.這樣安排使內容由淺入深,各部分相互聯系,因此及彼,層層展開.
3. 引導學生思考想一想中的內容,培養學生思維的深刻性,教師組織學生思考、討論過程中,鼓勵學生大膽猜想,積極探索,運用類比、歸納和從特殊到一般的思考方法激發學生創造性的思維.
教學設計示例
一、教學目標
1.掌握商的算術平方根的性質,能利用性質進行二次根式的化簡與運算;
2.會進行簡單的二次根式的除法運算;
3.使學生掌握分母有理化概念,并能利用分母有理化解決二次根式的化簡及近似計算問題;
4. 培養學生利用二次根式的除法公式進行化簡與計算的能力;
5. 通過二次根式公式的引入過程,滲透從特殊到一般的歸納方法,提高學生的歸納總結能力;
6. 通過分母有理化的教學,滲透數學的簡潔性.
二、教學重點和難點
1.重點:會利用商的算術平方根的性質進行二次根式的化簡,會進行簡單的二次根式的除法運算,還要使學生掌握二次根式的除法采用分母有理化的方法進行.
2.難點:二次根式的除法與商的算術平方根的關系及應用.
三、教學方法
從特殊到一般總結歸納的方法以及類比的方法,在學習了二次根式乘法的基礎上本小節
內容可引導學生自學,進行總結對比.
四、教學手段
利用投影儀.
五、教學過程
(一) 引入新課
學生回憶及得算數平方根和性質: (a0,b0)是用什么樣的方法引出的?(上述積的算術平方根的性質是由具體例子引出的.)
學生觀察下面的例子,并計算:
由學生總結上面兩個式的關系得:
類似地,每個同學再舉一個例子,然后由這些特殊的例子,得出:
(二)新課
商的算術平方根.
一般地,有 (a0,b0)
商的算術平方根等于被除式的算術平方根除以除式的算術平方根.
讓學生討論這個式子成立的條件是什么?a0,b0,對于為什么b0,要使學生通過討論明確,因為b=0時分母為0,沒有意義.
引導學生從運算順序看,等號左邊是將非負數a除以正數b求商,再開方求商的算術平方根,等號右邊是先分別求被除數、除數的算術平方根,然后再求兩個算術平方根的商,根據商的算術平方根的性質可以進行簡單的二次根式的化簡與運算.
例1 化簡:
(1) ; (2) ; (3) ;
解∶(1)
(2)
(3)
說明:如果被開方數是帶分數,在運算時,一般先化成假分數;本節根號下的字母均為正數.
例2 化簡:
(1) ; (2) ;
解:(1)
(2)
讓學生觀察例題中分母的特點,然后提出, 的問題怎樣解決?
再總結:這一小節開始講的二次根式的化簡,只限于所得結果的式子中分母可以完全開的盡方的情況, 的問題,我們將在今后的學習中解決.
學生討論本節課所學內容,并進行小結.
(三)小結
1.商的算術平方根的性質.(注意公式成立的條件)
2.會利用商的算術平方根的性質進行簡單的二次根式的化簡.
(四)練習
1.化簡:
(1) ; (2) ; (3) .
2.化簡:
(1) ; (2) ; (3)
六、作業
教材P.183習題11.3;A組1.
七、板書設計
初二數學教案 13
新課指南
1.知識與技能:(1)在具體情境中了解代數式及代數式的值的含義;(2)掌握整式、同類項及合并同類項法則和去括號法則;(3)培養學生用字母表示數和探索數學規律的能力.
2.過程與方法:經歷探索規律并用代數式表示規律的過程,學會列簡單的代數式.在具體情境中體會同類項的意義及合并同類項、去括號法則的必要性,總結合并同類項及去括號的法則,并利用它們進行整式的加減運算和解決簡單的實際問題.
3.情感態度與價值觀:通過對整式加減的學習,深入體會代數式在實際生活中的應用,它為后面學習方程(組)、不等式及函數等知識打下良好的基礎,同時,也使我們體會到數學知識的產生來源于實際生產和生活的需求,反之,它又服務于實際生活的方方面面.
4.重點與難點:重點是用含有字母的式子表式規律,理解整式的意義,合并同類項的法則和去括號的法則.難點是探索規律的過程及用代數式表示規律的方法,以及準確識別整式的項、系數等知識.
教材解讀精華要義
數學與生活
如圖15-1所示,用同樣規格的黑、白兩色的正方形瓷磚鋪長方形地面,在第n個圖形中,每一行有塊瓷磚,每一列有塊瓷磚,共有塊瓷磚,其中黑色瓷磚共塊,白色瓷磚共塊.
思考討論由圖15-1可以看到,當n=1時,一橫行有4塊瓷磚,一豎列有3塊瓷磚;當n=2時,一橫行有5塊瓷磚,一豎列有4塊瓷磚;當n=3時,一橫行有6塊瓷磚,一豎列有5塊瓷磚.綜上可以發現:4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一橫行的瓷磚數等于n加上3,一豎列的瓷磚數等于n加上2.所以,在第n個圖形中,每一橫行共有(n+3)塊瓷磚,每一豎列共有(n+2)塊瓷磚,共有(n+3)(n+2)塊瓷磚,其中白色瓷磚共(n+3-2)(n+2-2)=n(n+1)塊,黑色瓷磚共有[(n+3)(n+2)-n(n+1)]塊.這就是用字母來表示數,即代數式,你還能舉出這樣用字母表示數的例子嗎?
知識詳解
知識點1代數式
用基本的運算符號(運算包括加、減、乘、除、乘方與開方)把數和表示數.的字母連接起來的式子叫做代數式.單獨的一個數或一個字母也是代數式.
例如:5,a,(a+b),ab,a2-2ab+b2等等.
知識點2列代數式時應該注意的問題
(1)數與字母、字母與字母相乘時常省略“×”號或用“·”.
如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.
(2)數字通常寫在字母前面.
如:mn×(-5)=-5mn,3×(a+b)=3(a+b).
(3)帶分數與字母相乘時要化成假分數.
如:2×ab=ab,切勿錯誤寫成“2ab”.
(4)除法常寫成分數的形式.
如:S÷x=.
初二數學教案 14
知識與技能
1.了解分式的基本性質,掌握分式的約分和通分法則。掌握分式的四則運算。
2.會用待定系數法求反比例函數的解析式,能利用函數性質分析和解決一些簡單的實際問題。
3.體驗勾股定理的探索過程,會運用勾股定理解決簡單問題。會運用勾股定理的逆定理判定直角三角形。
4.探索并掌握平行四邊形、矩形、菱形、正方形、等腰梯形的有關性質和常用判定方法,并運用這些知識進行有關的證明和計算。
5.進一步理解平均數、中位數和眾數等統計量的統計意義,會計算極差和方差,理解它們的統計意義,會用它們表示數據的波動情況。
過程與方法
進一步培養學生的合情推理能力和發展學生邏輯思維能力和推理論證的表達能力;解決一些實際問題,體會化歸思想和函數的變化與對應的思想;養成用數據說話的習慣和實事求是的科學態度;培養學生的探究能力、數學歸納能力,在活動中培養學生的合作交流能力;逐步形成獨立思考,主動探索的習慣。
情感、態度與價值觀
豐富學生從事數學活動的經驗和體驗,通過對問題的共同探討,培養學生的協作精神,通過對知識方法的總結,培養反思的習慣,和理性思維。培養學生面對教學活動中的困難,能通過合作交流解決遇到的困難。
初二數學教案 15
一、教學目標
1. 掌握等腰梯形的判定方法.
2. 能夠運用等腰梯形的性質和判定進行有關問題的論證和計算,進一步培養學生的分析能力和計算能力.
3. 通過添加輔助線,把梯形的問題轉化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉化的思想
二、教法設計
小組討論,引導發現、練習鞏固
三、重點、難點
1.教學重點:等腰梯形判定.
2.教學難點:解決梯形問題的基本方法(將梯形轉化為平行四邊形和三角形及正確運用輔助線).
四、課時安排
1課時
五、教具學具準備
多媒體,小黑板,常用畫圖工具
六、師生互動活動設計
教師復習引入,學生閱讀課本;學生在教師引導下探索等腰梯形的判定,歸納小結梯形轉化的常見的輔助線
七、教學步驟
【復習提問】
1.什么樣的四邊形叫梯形,什么樣的梯形是直角梯形、等腰梯形?
2.等腰梯形有哪些性質?它的性質定理是怎樣證明的?
3.在研究解決梯形問題時的基本思想和方法是什么?常用的輔助線有哪幾種?
我們已經掌握了等腰梯形的性質,那么又如何來判定一個梯形是否是等腰梯形呢?今天我們就共同來研究這個問題.
【引人新課】
等腰梯形判定定理:在同一底上的兩個角相等的梯形是等腰梯形.
前面我們用等腰三角形的定理證明了等腰梯形的性質定理,現在我們也可以用等腰三角形的判定定理來證明等腰梯形的判定定理.
例1已知:如圖,在梯形 中, , ,求證: .
分析:我們學過“如果一個三角形中有兩個角相等,那么它們所對的邊相等.”因此,我們只要能將等腰梯形同一底上的兩個角轉化為等腰三角形的兩個底角,定理就容易證明了.
(引導學生口述證明方法,然后利用投影儀出示三種證明方法)
(1)如圖,過點 作 、 ,交 于 ,得 ,所以得 .
又由 得 ,因此可得 .
(2)作高 、 ,通過證 推出 .
(3)分別延長 、 交于點 ,則 與 都是等腰三角形,所以可得 .
(證明過程略).
例3 求證:對角線相等的梯形是等腰梯形.
已知:如圖,在梯形 中, , .
求證: .
分析:證明本題的關鍵是如何利用對角線相等的條件來構造等腰三角形.
在 和 中,已有兩邊對應相等,別人要能證 ,就可通過證 得到 .
(引導學生說出證明思路,教師板書證明過程)
證明:過點 作 ,交 延長線于 ,得 ,
∴ .
∵ , ∴
∴
∵ , ∴
又∵ 、 ,∴
∴ .
說明:如果 、 交于點 ,那么由 可得 , ,即等腰梯形對角線相交,可以得到以交點為頂點的兩個等腰三角形,這個結論雖不能直接引用,但可以為以后解題提供思路.
例4 畫一等腰梯形,使它上、下底長分別5cm,高為4cm,并計算這個等腰梯形的周長和面積.
分析:如圖,先算出 長,可畫等腰三角形 ,然后完成 的畫圖.
畫法:①畫 ,使 .
.
②延長 到 使 .
③分別過 、 作 , , 、 交于點 .
四邊形 就是所求的等腰梯形.
解:梯形 周長 .
答:梯形周長為26cm,面積為 .
【總結、擴展】
小結:(由學生總結)
(l)等腰梯形的判定方法:①先判定它是梯形②再用“兩腰相等”“或同一底上的兩個角相等”來判定它是等腰梯形.
(2)梯形的畫圖:一般先畫出有關的三角形,在此基礎上再畫出有關的平行四邊形,最后得到所求圖形.(三角形奠基法)
八、布置作業
l.已知:如圖,梯形 中, , 、 分別為 、 中點,且 ,求證:梯形 為等腰梯形.
九、板書設計
十、隨堂練習
教材P177中l;P179中B組2
【初二數學教案】相關文章:
經典數學教案02-22
人教版小學數學教案01-14
我的初二-初二02-09
完全平方公式數學教案03-01
小班下冊數學教案02-28
小學數學教案5篇02-25
對數的數學教案范文03-22
小班下冊數學教案02-28
春雨初二寫景作文-初二作文10-19
守護-初二02-09