- 相關推薦
大數據時代讀后感范文(通用20篇)
細細品味一本名著后,相信你一定有很多值得分享的收獲,這時最關鍵的讀后感不能忘了哦。那么你真的會寫讀后感嗎?以下是小編收集整理的大數據時代讀后感范文,希望能夠幫助到大家。
大數據時代讀后感 1
近兩周用業余時間讀了《大數據時代》這本書,是聽培訓時杜威老師推薦的,我快速閱讀了一遍,覺得受到了一些啟發,發現了一些原來沒有想到看到的事情。
首先是大數據代表著數據的樣本=全體,這是一個與傳統統計學的顯著區別。大數據有能力獲得全體數據并對其進行分析。
第二就是相關性與因果性同樣重要。相關性說明了什么事情與什么什么事情有關系,如商場周圍車流量的增多與商場銷售額的相關性,因果性說明什么是什么的原因,如睡10個小時是有精神的.原因。在大數據中,相關性要比因果性容易獲得,而且相關性已經能為客戶帶來較大的收益。
第三就是大數據允許存在不精確性、混雜性,由于數據量巨大,存在少量的異變不會對結果產生任何影響,如收益是1個億與1億零1元的差別可能決策者不關心。
第四是大數據中的三個主要因素,思維、數據、技術,思維覺得你在哪些地方使用大數據。在這三個因素之中,會產生數據中間商,來處理加工數據并出售。
大數據時代讀后感 2
知道"是什么"就夠了,沒必要知道"為什么"。在大數據時代,我們不必非得知道現象背后的原因,而是讓數據自己"發聲"。這個命題是我讀這本書最大的感觸。
對于大多數人來說,這的確是一場思維變革。對于理科學生來說,會認為這是一個錯誤的觀點,因為這無異于否定了他們對世界客觀物理化學規律探索的重要性;對于一名工科學生,其實這并不是一個多么新穎的觀點,因為工科是講求時用性的,如何能更好地利用基本自然科學規律創造社會財富比探索自然科學知識顯得更重要。
這些天來,在讀大數據這本書的同時,也稍微重溫了一下自動控制原理,認識到控制系統中存在明顯的大數據時代思維方式,借讀書交流會之際,與大家分享。
對系統的有效控制需要對系統理解與建模。以一個日常生活中的例子說明。開車的時候一腳油門下去車就飛出去了,但并不知道這一腳油門下去能給多大車速,這就需要駕駛人員的.熟練的駕駛技能了,不然超速被開罰單是很正常的。那么,問題就來了:如何能實現速度的自動控制而不用駕駛人員踩油門?這就是控制系統最關鍵的環節——建立系統數學模型。大白話就是知道車速與燃油量的數學關系式。若是以探索為什么的思維模式,不可避免的要列一大堆能量方程、動量方程等物理化學式子,經過繁雜的計算,還是能得到車速和燃油量的數學關系式的。很明顯這是一個繁瑣的過程,因為得知道現象背后的原因。這僅是對于這種簡單的系統,若是對于航空發動機這種復雜的系統,結構工藝過于復雜,分析各部分的物理化學過程是十分困難的,這時候可以通過實驗法得到數學模型。
實驗法主要有時域測定法、頻域測定法和統計相關法。與大數據時代思維最接近的是統計相關法,主要過程是對被研究對象施加某種隨機信號,根據被測對象各參數的變化,采用統計相關法確定被測系統或對象的動態特性。這種方法可以在被測系統或生產過程正常運行狀態下進行在線辨識,測試結果精度較高,但要求采集大量測試數據,并需要相關儀和計算機進行數據計算和處理。
若用開車實例來解釋,此時的系統為汽車動力系統,施加的隨機信號為燃油量,被測對象指車轉速,得到的動態特性就是指車速與燃油量函數關系式,從而不用探求背后的物理化學規律就得到了數學模型。
在沈陽黎明航空公司實習時去過試車間,除了發動機點火后震撼的場景動人心魄,控制室屏幕上海量的數據也同樣引人注目,我想這么多數據無非就是驗證數學模型或直接實驗法得到數學模型,結合航空發動機這種復雜的系統,對于搞控制的人來說,得到數學模型就夠了,現象背后的原因交給研發的人來探索更好。
大數據時代讀后感 3
對于暢銷書刊、熱點話題、時尚科技,始終不太感興趣。書刊,喜歡有一定年份的。話題,鐘情于務虛的觀點。新奇的產品于我無緣,習慣使用成熟的科技產品。既不清高,也非冷漠,就是要與現實保持一定的距離,給自己留一點思考的空間。這一習慣最近破了例。由于工作的原因,耳濡目染,“大數據”這個新興概念開始頻繁步入我的視野。按捺不住內心的好奇,網購《大數據時代》,手不釋卷,三天讀完,頗有收獲。此書有如下特點。
首先,作者站在理論的制高點上,條理清楚地闡述了大數據對人類的工作、生活、思維帶來的革新,大數據時代的三種典型的商業模式,以及大數據時代對于個人隱私保護、公共安全提出的挑戰。其次,文中的事例貼近現實生活,貼近時代,令讀者既印象深刻,又感同身受。此外,作者沒有使用大量的專業術語,沒有假裝一副專業的面孔。縱觀全書,遣詞造句,均通俗易懂。
作者認為大數據時代具有三個顯著特點。
一、人們研究與分析某個現象時,將使用全部數據而非抽樣數據。
二、在大數據時代,不能一味地追求數據的精確性,而要適應數據的多樣性、豐富性、甚至要接受錯誤的數據。
三、了解數據之間的相關性,勝于對因果關系的探索。“是什么”比“為什么”重要。
作者指出,隨著技術的發展,數據的存儲與處理成本顯著降低,人們現在有能力從支離破碎的`、看似毫不相干的數據礦渣中抽煉出真知爍見。在大數據時代,三類公司將成為時代的寵兒。一是擁有大數據的公司與組織。如政府、銀行、電信公司、全球性互聯網公司(阿里巴巴、淘寶網)。二是擁有數據分析與處理技術的專業公司,如亞馬遜、谷歌。三是擁有創新思維的公司,他們可能既不掌握大數據,也沒有專業技術,但卻擅長使用大數據,從大數據中找到自己的理想天地。
面對即將來臨的大數據時代,個人將如何應對自如?這是個嚴肅的問題。
大數據時代讀后感 4
舍恩伯格的《大數據時代》被人推崇為最佳書籍,今年安泰讀書會的重頭戲。雖然主講人最后放了個香港大黃鴨般的鴿子,但現場討論氛圍依舊非常熱烈——而且還是在沒幾個人讀完的情況下,也就意味著——大數據對我們的影響,已經深入到生活的方方面面。
無處不在的大數據:各種云計算,谷歌的神通,亞馬遜的推送,天涯人肉,微博萬能等等等等,我們掌握了新的工具,也獲取了以前從未有過的各種信息。大數據拉近了我們與現實的距離,“地球村”變成了“地球屋”,仿佛所有人所有事物都觸手可及,而這些牛逼哄哄的互聯網巨頭就在客廳展示著世界的每一寸光景。
然而,事實真的是這樣嗎?首先,從應用角度出發,低廉的運算能力和存儲空間,讓以前的樣本分析顯得非常簡陋——一些從全體數據挖掘出來,忽略精確而從大量數據的簡單算法得出來的結論顛覆了常識。但個人覺得,這只是統計學的終極目標——并沒有非常大的跨越,可能終結了回歸分析,有效性驗證等手段,但依舊還是統計。而革命性在于關注相關關系而非因果關系。現場討論從神學角度挑戰了因果關系的不可能——或者說人類用簡單思考的邏輯來定義因果,以及用之前小數據演繹出大概率事件來推導因果,都是不正確的。真正的因果關系應該屬于上帝的范疇,人類如果真的完全掌握之后,會統治整個宇宙。但我覺得,無需從神學觀點來討論,而可以借鑒量子力學對經典力學的顛覆——在原子層面上,經典力學會失效——那么在大數據層面上,普通的抽樣調查直觀反映會失效。而且從量子力學角度是很難推導經典力學的公式,那么從現在的慣有思維,也難以推導出大數據的因果關系。同時現場有討論,是否計算機可以精確地模擬每個原子,然后完整地展現微觀到宏觀的`化學反應細節?我覺得首先是計算能力不足,其次即便設定原子的運動條件真的正確,計算結果未知但宏觀結果我們卻已經知道——牛頓的經典力學足以應付日常絕大部分情況了。好比切西瓜,究竟刀頭的鐵原子和西瓜的有機分子如何作用,真的重要嗎?回歸到商業領域,如果我們可以提高相關性的準確度,從而提高投入效率,那就已經足夠了。本來一個產品受到一半客戶喜歡,但如果通過大數據挖掘到更好的定位,有百分之八十的客戶喜歡,那么價值已經非常可觀了。
大數據時代的社會倫理——很大的命題,但重點都在討論如何保護個人隱私。因為手機越來越智能,網絡越來越快,個人的信息也越來越透明——隱形幾乎完全不可能。我想說的是,作為硬幣的另外一面,我們無法舍棄:互聯網只不過是讓人與人之間碎片的關系得以統一,其實各種人肉和信息只不過是坊間傳聞的升級罷了。當我們住在擁擠的小區,三公里走完一圈的縣城,半小時散步完的村落,人和人之間有隱私嗎?現在只不過是把這個范圍放大到了一個地球而已。硬幣的一面是人和人之間有溝通的需要,去團結對抗世界的未知,那么另外一面就是隱私的缺乏。與其說是要在大數據時代保護自己的信息不被泄露,不如站起來維護自己和他人的隱私,從法律和道德的角度來尊重人與人之間的權利。在一個互相尊重的環境下,你可以穿熱褲,他也可以穿長裙走上街頭;在一個互相踐踏的社會中,人人都得帶著面具生活。
大數據幫助我們把未來的迷霧撥開了一點,但好比《沉重的肉身》當中討論的,更多的選擇權并不能帶給人幸福——因為知道自己不能做不能得到的也更多了。解決工作模式,生存意義,幸福之道等問題,關鍵還是看自己如何看待和使用這些新式工具以及新結論。引用《神探伽利略》里面的臺詞:可被重復的,一定有道理存在。那么現在重復的越來越多,更需要保持探索和敬畏之心,人才不會迷路。
大數據時代讀后感 5
這么多年來,看了很多東西,如今回過頭來發現,好像什么都忘了,真是悲劇,所謂讀書破萬卷,下筆如有神或許是不對的,還是需要下筆勤快,所以決定從這里開始。
這些年對于技術的發展,我是沒有跟上,如今發現即便是對于投資,技術對于我們生活的改變太大,而自己身在這個技術浪潮的前沿,還是需要跟上步伐。——前言
大數據這個概念已經提了很久,我也一直疏忽了對于它的理解。看完《大數據時代》,再結合如果工作上對于大數據的理解,頓時發現數據的重要性,以前在這方面的確沒有足夠的思想意識。
整本書來說,我覺得最關鍵的三個點是前面幾個章節:
1、要總體,不要隨機樣本:從小對于統計學相關的學習,基本都是從樣本出發,理論的基礎在于如何隨機的足夠分散的選取樣本,這可是技術活加直覺。而對于大數據來說,要的就是總體,本質上來說,總體樣本的確更能準確找到結果。但是對于統計來說,總體的'分析增加了數據分析的難度,不僅數據核對不好進行,一旦出現數據污染,準確度就會大打折扣,而且進行數據回溯的時候,也無法準確確認問題,而這一點也是后面相關性上問題;
2、要混亂,而不是精確:這里主要想說明的是希望數據的多樣性,盡量將相關數據都收集起來,不管是結構化的還是非結構化的。這樣就不可避免的最終結果的不準確性。大數據更多的是從一個總體數據中說明以后概率事件,既然是概率,也就可以理解無法精確。這里有個點的說明,我覺得需要提一下,大數據算法更傾向于“簡單”,而不是復雜,這個倒是出乎我的意外。
3、要相關性,而不是因果:從我對于知識獲取的過程來說,我是不同意這個觀點,從人體對于知識的理解,還是要從因果論出發,沒有因果論,就會變成瞎子。而作者的觀點上來說,原因可能還是從大數據本身的非準確性,一旦找到合適的算法,找到相關性,向上追述原因本身就很難。但是從舉的示例上看,相關性的確認是一個非常大的工程,基本就是使用排舉法,一個一個試。
所以,對于大數據來說,最重要的三點是:1、數據——得到更多數據;2、算法——建立更快的算法體系;3、思維——尋找數據間更多的相關性。
對于數據最終的走向,我同意書中所提到的政府管理的觀點,既然都是以“石油”的標準來看待數據,政府統一管理也就是必然的了。而且對于政府來說,掌握更多數據也有利于其管理及維護社會的穩定性。而對于社會道德方面的論述,我不想多說什么,時代發展是不會被道德綁架的。
所以最后,想要建立對于大數據的思維,《大數據時代》還是值得一讀,里面的很多示例也非常不錯。如人際關系這一塊,也是出乎我的意料。
大數據時代讀后感 6
在這個即將到來的大數據時代里,我們應該摒棄傳統還是推陳出新,因為大數據時代里的一些思想相矛盾,在這個信息化的時代里,大數據才是人們獲取新知識和創造新價值的源泉。
讀書先讀引言,引言是這本書的眼睛,反復閱讀會受益良多。
第一個能力,洞察力,我先來解釋一下洞察力吧,洞察力是指觀察事物的能力,能從見到的事物中先知先覺,覺察到問題的所在,洞察力指心靈對事物的穿透力,感覺力,洞察事物的能力,簡單說,洞察力就是人們對個人認知情感,行動的動機與相關關系的透徹分析,再言簡意賅,洞察力就是一個人對外界信息的獲取能力,比如《神探夏洛克》中,夏洛克能從外界事物中提取一些他想要的信息,當然電視上的難免有點夸張,不過這種能力以后無論是在生活中還是部隊建設中都是很有價值的
大數據時代不再要求每個數據都必須準確無誤,因為大數據時代,當很多數據在一起尋求某種規律或是個數學關系時,錯誤的數據很快就會被發現,因為偏移太大,因此大數據時代是用概率說話的,而不需要每個數據都是確鑿無疑的。
相關關系在大數據時代顯得尤其重要,甚至比我們傳統的因果關系更重要,因為大數據的核心是預測,而預測是建立在相關關系分析法基礎上的,有一個美國公司曾經揚言,可以預測一個人第二天會做什么事,雖然說這個說法很荒謬,但是如果我們現在以大數據的思維去想,我們不管他真的是否能預測,或是他預測的方法是什么,我們要考慮的是如果這中說法是真的,那么我們該怎么去應對,這就是大數據時代的相關關系,我更覺得,相關關系更像是一個哲學問題。
我們應該把我們所掌握的知識和理解的用于部隊,我們應該大力搜索數據而不是抽取,因為我們現在具備處理數據的能力,并用來預測敵軍的動向。
一旦世界被數據化了,只有你想不到的,沒有信息做不到的,我們要做的`就是利用信息去做有利于我們的事,我們必須擁有分析的工具(統計學和算法)以及必需的設備(信息處理器和存儲器),那么我們就要培養統計學家和算法師。
數據創新當然是接下來時間內我們要做的和研究的主要對象。
大數據也有不利影響,這不是大數據本身的缺陷,而是我們濫用的結果,就像我們無法去逮捕一個將要犯罪的人,因為我們無法對將要發生的事情負責。
大數據時代,一個名副其實的信息社會,我們要提高自己的能力,做新,做多,做好,做快,讓它真真正正的為我們服務。
大數據時代讀后感 7
讀完《大數據時代》這本書后,我意識到:我們即將或正在迎接由書面到電子的跳躍之后的又一重大變革。 這本書介紹了大數據時代來臨后,接踵而至的三項變革——商業變革、管理變革和思維變革。 其實,這場變革已經打響。商業領域由于大數據時代的到來而推陳出新。前幾年,一家名為Farecast的公司,讓預訂到更優惠的機票價格不再是夢想。公司利用航班售票的數據來預測未來機票價格的走勢。現在,使用這種工具的乘客,平均每張機票可以省大約50美元,這就是大數據給人們帶來的便利。 大家應該都知道2009年出現的H1N1型流感,就拿美國為例,疾控中心每周只進行一次數據統計,而病人一般都是難以忍受病痛的折磨才會去醫院就診,因此也導致了信息的滯后。然而,對于飛速傳播的疾病,Google公司卻能及時地作出判斷,確定流感爆發的地點,這便是基于龐大的數據資源,可見大數據時代對公共衛生也產生了重大的影響! 在我看來,如果想在在大數據時代里暢游,不僅要學會分析,而且還要能夠大膽地決斷。 在美國,每到七、八月份時,正是臺風肆虐之時,防澇用品也擺上了商品貨架。沃爾瑪公司注意到,每到這時,一種蛋撻的銷售量較其他月份明顯增加。于是,商家作了大膽的推測,出現這樣的結果源于兩種物品的相關性,便將這種蛋撻擺在了防澇用品的旁邊。這樣的舉措大大增加了利潤,這就是屬于世界頭號零售商的大數據頭腦! 大數據時代的到來,可以讓我們的生活更加便利。但是,如果讓大數據主宰一切,也存在一定的風險。 大家應該都知道電子地圖,它可以為人們指引方向。但大家應該還不知道,它會默默地積累人們的行程數據,通過智能分析可以推斷出哪里是自己的家,哪里是工作單位。我們的隱私就這樣被不為人知地收集著。 大數據時代的到來,讓我們的生活更安全,更方便,但與此同時,我們的隱私不再是隱私,數據的收集變得無所不包、無孔不入。世界已經向大數據時代邁進了一小步,一個嶄新的時代正向我們走來。讓我們用知識武裝大腦,做好準備,迎接新時代的到來!
在看《大數據》之前,我只知道社會越來越數字化了,看完之后,才覺悟到:人類將迎來一個新的時代。 數字化已經把我們帶入一個信息時代,大數據卻把我們卷進了一場科技風暴之中,這本書中,作者為我們開啟了一個更包容更廣闊的新時代,大數據把社會的方方面面融合在了一起,曾經看似因果聯系緊密的事物,可能變得不再那么重要;毫無關聯的事物,可能隱藏著重要的信息,從科技、商業,到醫療、政治、教育、文化,大數據一概席卷囊括,它改變著我們的傳統思維,為這個時代注入了新鮮的血液,就像作者書中所說:“這項技術終將改變我們所居住的星球上的許多東西。” 大數據最顯著的影響是對于電子商務,通過大數據,最先洞察出潛在市場的,也必然最先占領市場。而電子商務對實業的沖擊又是勢不可擋,可見,掌握了大數據就主導了市場,擁有了先進的科技才能擁有堅實的競爭力。在醫療方面,曾經的非典時期,就是一個很好的例證,正是有大數據的預測功能,才使疫情得到了控制。在更小的方面,他也同樣改變著我們的.生活,書中提到美國著名計算機專家奧倫 · 埃齊奧尼發明了飛機機票價格預測軟件,就是利用大數據造福我們生活的很好例子。 大數據不僅節省了時間,提高了效率,更將人類帶入一個新的文明階段。從分析因果總結經驗,轉變為搜集數據預測未來;由原來的滯后性變為現在的預見性——大大提高了人類認識世界、改造世界的能力,變被動為主動。大數據為我們掀開了歷史新紀元,不敢想象它將會為我們帶來什么,或許會出現新奇的生活方式,從未有過的職業,聞所未聞的商業模式,百家爭鳴的文化高峰;也或許會解開更多未解之謎,探索到宇宙之外的秘密。總之,毫無疑問的是,大數據為我們帶來的未來是超乎想象的。
這本書中作者提到最多的是:改變我們的傳統思維,摒棄精確性轉向宏觀。從總結因果轉向預測。這個世界正以驚人的速度向前發展,數據大爆炸的波及范圍遠超乎我們的想象,單純靠人類的主觀判斷力是多么的有限,大數據早晚會取而代之這一現象,這必將影響我們的生活和工作,我們也只有認清這種趨勢,改變思維,調整步伐,緊跟時代才行。即使不能與時代同步,也盡量做到避免固步自封,認識大數據、利用大數據趨利避害,為我們的生活造福!
大數據時代讀后感 8
信息時代的到來,我們感受到的是技術變化日新月異,隨之而來的是生活方式的轉變我們這樣評論著的信息時代已經變為曾經。如今,大數據時代成為炙手可熱的話題。筆者在這說明信息和數據,只是試圖首先說明信息、數據的關系和不同,也試圖說明,為什么信息時代轉變為了大數據時代?大數據時代帶給了我們什么?
信息和數據的定義。維基百科解釋:信息,又稱資訊,是一個高度概括抽象概念,是一個發展中的動態范疇,是進行互相交換的內容和名稱,信息的界定沒有統一的定義,但是信息具備客觀、動態、傳遞、共享、經濟等特性卻是大家的共識。數據:或稱資料,指描述事物的符號記錄,是可定義為意義的實體,它涉及到事物的存在形式。它是關于事件之一組離散且客觀的事實描述,是構成信息和知識的原始材料。數據可分為模擬數據和數字數據兩大類。數據指計算機加工的“原料”,如圖形、聲音、文字、數、字符和符號等。從定義看來,數據是原始的處女地,需要耕耘。信息則是已經處理過的可以傳播的資訊。信息時代依賴于數據的爆發,只是當數據爆發到無法駕馭的狀態,大數據時代應運而生。這是否是《大數據時代》一書所未曾闡述的.背景材料?
在《大數據時代》一書中,大數據時代與小數據時代的區別:
1、思維慣例。大數據時代區別與轉變就是,放棄對因果關系的渴求,而取而代之關注相關關系。也就是說只要知道“是什么”,而不需要知道“為什么”。作者語言絕對,卻反思其本質區別。數據的更多、更雜,導致應用主意只能盡量觀察,而不是傾其所有進行推理?這也是明智之舉。
2、使用用途。小數據停留在說明過去,大數據用驅動過去來預測未來。筆者認為數據的用途意在何為,與數據本身無關,而與數據的解讀者有關,而相關關系更有利于預測未來。
3、結構。大數據更多的體現在海量非結構化數據本身與處理方法的整合。大數據更像是理論與現實齊頭并進,理論來創立處理非結構化數據的方法,處理結果與未來進行驗證。
4、分析基礎。大數據是在互聯網背景下數據從量變到質變的過程。筆者認為,小數據時代也即是信息時代,是大數據時代的前提,大數據時代是升華和進化,本質是相輔相成,而并非相離互斥。
數據未來的故事。數據的發展,給我們帶來什么預期和啟示?銀行業天然有大數據的潛質。客戶數據、交易數據、管理數據等海量數據不斷增長,海量機遇和挑戰也隨之而來,適應變革,適者生存。我們可以有更廣闊的業務發展空間、可以有更精準的決策判斷能力、可以有更優秀的經營管理能力可以這些都基于數據的收集、整理、駕馭、分析能力,基于脫穎而出的創新思維和執行。因此,建設“數據倉庫”,培養“數據思維”,養成“數據治理”,創造“數據融合”,實現“數據應用”才能擁抱“大數據”時代,從數據中攫取價值,笑看風云變換,穩健贏取未來。
大數據時代讀后感 9
讀了涂子沛先生的《大數據時代》(這是一本社科類書籍,想深入研究大數據原理的可以選擇其他技術類專業書籍)。作者以美國為例,講述了“數據不僅可以治國,還可以強國”的觀點,對中國今后的大數據發展戰略提出了建議。讀完之后,主要有一下幾點感想。
一、美國社會之所以發達高效,引領世界科技的發展,與其尊重數據,收集數據的傳統是分不開的。數據被視為科學的度量、知識的來源。沒有數據,無論是學術研究,還是政策制定,都寸步難行。“數據驅動決策方法”使得政府更有效率、更加開放、更加負責。
數據的積累需要時間,不能一蹴而就,美國在數據的收集方面歷史悠久。美國聯邦政府的取得數據主要有三個來源:業務管理的數據,民意社情數據,物理環境數據。例如1940年羅斯福引進的`民意調查、1962年啟動的海浪監測計劃和1973年誕生的最小數據集。而中國取得類似的進步,是進入21世紀之后才發生的事情。2003年,中國開始著手制定醫療系統的最小數據集,創立了第一個全國性的大型社會調查項目,開始對社會的發展和變遷進行全方位、綜合性、縱貫性的問卷訪談調查。2006年中國衛生部才出臺了最小數據集的標準。幾經周折,國家統計局才在2006年9月成立了社情民意調查中心。
中國的落后,根源之一是缺乏以數據為基礎的精確管理,未來中國的進步,需要面對收集數據、使用數據、開放數據的挑戰。
二、大數據是一柄雙刃劍,數據雖然可以造福于民,但是也可能成為控制人民的工具。2013年的“棱鏡門”事件揭露了政府對于人民的監控,引起軒然大波。在未來,每個人都可能存在一份數據檔案,包括一個人的教育、醫療、福利、犯罪和納稅等等一切從搖籃到墳墓的數據記錄,甚至包括電話、郵件等都可能被監聽和記錄。通過數據整合和信息加總,就可以再現一個人生活的軌跡和全景,各個系統之間的數據可以彼此印證、互相解釋,個人隱私就無所遁形。英國作家喬治。奧威爾在其諷刺小說《一九八四》中描述了時刻被“老大哥”監視的零隱私的可怕情形:不論是睡著還是醒著,在工作還是在吃飯,在室內還是在戶外,早浴盆里還是在床上,沒有躲避的地方。除了你腦殼里幾個立方厘米以外,沒有東西是屬于你自己的。
隨著大數據科技的發展,我們的一舉一動,每一通話,每一次上網記錄都被監控、記錄,分析,當這些數據被某一個人或組織掌握,將會是對我們隱私的莫大威脅,因此,對于數據使用的監管需要進一步的立法進行規范,我國目前對于數據的收集、利用處于野蠻生長階段,任何商業組織都可以收集和分析用戶的信息。政府需要立法對技術的使用進行監管,保障公民的安全。
三、數據是一種公共資源,政府使用納稅人的錢收集了數據信息之后,需要將數據進行公開,這樣既可以集中大眾的智慧,利用數據科學地治理社會;也可以讓大眾對政府的行為進行監督,避免政府的腐敗。因為缺乏競爭,官僚體制與生俱來有一種僵化保守的本性,政府機關也往往固守不前。很多數據都被以機密為借口封存起來,人民就無從得知政府的各項舉措是否合理,因此在黑暗中就滋生了腐敗。
而且,現代社會中,掌握信息多的人,在社會競爭中處于有利的地位,而信息貧乏的人,則處于不利地位,數據不應該被少數人壟斷,應該作為一種公共資源被普通百姓獲取。
四、技術的進步離不開科學技術人員的不懈努力,知識分子應該承擔促進社會進步的責任和使命。正如Linux的開發者所說的:“一個人做事的動機,可以分為三類:一是求生,二是社會生活,三是娛樂。當我們的動機上升到一個更高階段時,我們才會取得進步:不是僅僅為了求生,更是為了改變社會,更理想的是——為了興趣和快樂。
大數據時代讀后感 10
這本書里主要介紹的是大數據在現代商業運作上的應用,以及它對現代商業運作的影響。
《大數據時代》這本書的結構框架遵從了學術性書籍的普遍方式。也既,從現象入手,繼而通過對現象的解剖提出對這一現象的解釋。然后在通過解釋在對未來進行預測,并對未來可能出現的問題提出自己看法與對策。
下面來重點介紹《大數據時代》這本書的主要內容。
《大數據時代》開篇就講了Google通過人們在搜索引擎上搜索關鍵字留下的數據提前成功的預測了美國的H1N1的爆發地與傳播方向以及可能的潛在患者的事情。Google的預測比政府提前將近一個月,相比之下政府只能夠在流感爆發一兩個周之后才可以弄到相關的數據。同時Google的預測與政府數據的相關性高達97%,這也就意味著Google預測數據的置信區間為3%,這個數字遠遠小于傳統統計學上的常規置信區間5%!而這個數字就是大數據時代預測結果的相對準確性與事件的可預測性的最好證明!通過這一事以及其他的案例,維克托提出了在大數據時代“樣本=總體”的思想。我們都知道當樣本無限趨近于總體的時候,通過計算得到的描述性數據將無限的趨近于事件本身的性質。而之前采取的“樣本<總體”的做法很大程度上無法做到更進一步的描述事物,因為之前的時代數據的獲取與存儲處理本身有很大的難度只導致人們采取抽樣的方式來測量事物。而互聯網終端與計算機的出現使數據的獲取、存儲與處理難度大大降低,因而相對準確性更高的“樣本=總體”的測算方式將成為大數據時代的主流,同時大數據時代本身也是建立在大批量數據的存儲與處理的基礎之上的。
接下來,維克多又通過了IBM追求高精確性的電腦翻譯計劃的失敗與Google只是將所有出現過的相應的文字語句掃描并儲存在詞庫中,所以無論需要翻譯什么,只要有聯系Google詞庫就會出現翻譯,雖然有的時候的翻譯很無厘頭,但是大多數時候還是正確的,所以Google的電腦翻譯的計劃的成功,表明大數據時代對準確性的.追求并不是特別明顯,但是相反大數據時代是建立在大數據的基礎住上的,所以大數據時代追求的是全方位覆蓋的數字測度而不管其準確性到底有多高,因為大量的數據會湮埋少數有問題的數據所帶來的影響。同時大量的數據也會無限的逼近事物的原貌。
之后,維克托又預測了一個在大數據時代催生的重要職業——數據科學家,這是一群數學家、統計學與編程家的綜合體,這一群人將能夠從獲取的數據中得到任何他們想要的結果。換言之,只要數據充足我們的一切外在的與內在的我們不想讓他人知道的東西都見會在這一群家伙的面前展現得淋漓盡致。所以為了避免個人隱私在大數據時代被這一群人利用,維克托建議將這一群人分為兩部分,一部分使用數據為商業部門服務,而另一群人則負責審查這一些人是否合法的獲得與應用數據,是否侵犯了個人隱私。
無論如何,大數據時代將會到來,不管我們接受還是不接受!
我覺得《大數據時代》這本書寫的很好,很值得一讀。因為會給我們很多啟發,比如你在相關的社交網站發表的言論或者照片都很有可能被“數據科學家”們利用,從而再將相關數據賣給各大網店。不過,事實就是我們將會成為被預測被引誘的對象。所以說,小心你在網上留下的痕跡。
我喜歡這本書是因為它給我展現了一個新的世界。
大數據時代讀后感 11
《大數據時代》是英國維克托·邁爾-舍恩伯格教授的著作,這本書也被尊為國外大數據研究的先河之作。這本書最大的優點就在于作者利用上百個例子來對大數據的方方面面做了詳細解說,讓外行也很容易理解。結構上,作者通過大數據時代的思維變革、商業變革和管理變革三個角度依次闡述,條理清晰。
所謂"大數據",按作者的說法,就是"所有數據"。隨著計算機運算速度和存儲能力的發展,收集數據變得越來越簡單,儲存數據的成本越來越低。在過去,由于技術限制,人們做統計時只能收集有限的數據做樣本,其中要考慮隨機樣本的選擇,努力減小因樣本問題出現的誤差;統計結果往往不能重復使用,造成數據利用率低。而現在則可以做到"樣本=總體"。數據的增多帶來不可避免的精確性問題。 "小數據"時代,一個樣本的錯誤就可以造成對總體估計的失敗,幸運的是,"大數據"時代對精確性不再那么要求苛刻——也無法要求太嚴格——數據的數量足以彌補這一缺陷。在對思維變革這一部分的闡述中,最重要也是全書的核心觀點就是大數據時代,我們應該從追求"因果關系"的舊思維方式向追求"相關關系"轉變。 在我看來,這實際上是通過大數據來透視一種事物的發展趨勢,而很多精確學科領域依然需要探尋"因果關系"解決更有針對性的問題,所以,這局限了這一轉變只能在特定的領域發生。作者自己也說,"大數據的相關性將人們指向了比探討因果關系更有前景的領域。"
大數據時代的數據獲取方式是多種多樣,數據形式也是千變萬化,任何文字、行為、萬物都可以被數據化后用來分析。對這些數據的利用,不僅要考慮到其初次使用價值,更要放眼它未來可能的用途以提高數據的利用率。當然數據并不是無限使用,時效、環境的變化肯定會對數據提出新的要求,所以數據的折舊也是應當考慮的。這又引出了對數據這一無形資產的估值可能性。對于Facebook, Twitter這樣的公司來說,數據就是他們的核心,如何在資產負債表上給他們一個公正的體現正是我們需要考慮的。
大數據時代的價值鏈由三部分構成,我把它們簡化為"生產—分析—使用"三個環節,這對應書中的三種類型公司: 第一種是基于數據本身的公司,第二種是基于技能,第三種則是基于思維。在大數據早期,技能和思維最有價值,但作者認為,最終,大部分的價值還是必須從數據本身來挖掘。這是假定了一個成熟的市場,人人都了解了大數據的用途。
對于普通人來說,大數據時代最關心的`還是隱私問題。不知不覺中,個人的一舉一動都暴露在政府甚至私人企業之下,還面臨潛在的泄露風險。對此,作者提出了使用者承擔責任的解決辦法,而不是過去那種流于形式的使用授權。大數據甚至能預測一個人的犯罪動機,這給監管者帶來的難題是,預測一個人要犯罪,懲罰還是不懲罰?在這點上,社會達成"個人僅需對行為而非動機負責"的共識非常重要。
大數據時代的風險控制靠的是"算法師",類似會計師一樣的職業,對大數據的準確度或有效性進行鑒定。這能在一定程度上防止數據濫用的發生和數據獨裁。當今的法律亦需對大數據監管進行修訂補充。
當代大數據發展主要由科技公司推動,相信在不久的將來更多的傳統領域會意識到大數據的重要性。但我們也應該保持清醒,大數據并不是萬能藥,對某些領域或環節,使用大數據是一種簡單且實用的選擇;但對某些領域,盲目使用大數據只會適得其反。
大數據時代讀后感 12
我主要讀了第一部分和第三部分。
第一部分是大數據的思維變革,作者舍恩伯格提出了三個觀點,一是"不是隨機樣本,而是全體數據",二是"不是精確性,而是混雜性",三是"不是因果關系,而是相關關系",作者被譽為"大數據時代的預言家",拋出的觀點是擲地有聲的,下面我將談談我對這三點的理解。
對于一,我們必須承認我們以往做的處理抽樣數據得到結果的方法,是省時省力省錢的,而且判斷結果是相對高精準的,如人口普查這一案例,如果采用全體數據進行統計分析的話,工作難度是相當大的,最后的結果也不會很滿意,這是得不償失的。但是隨著數據處理技術的飛速發展,我們已經具備了處理大量數據的能力,如果在數據分析過程中采用全體數據,就能避免抽樣數據可能由于選取偏見帶來的非隨機性,處理全體數據也必將成為一種趨勢。用在國防生管理工作中,就是管理層要對每個個體都給予充分的關心與互動,對于優秀的固然要偏愛,但是對于較差的也要保持"不拋棄不放棄"的態度,讓每一個個體都找到自己的定位與價值。
對于二,作者強調通過掌握更多的數據,暫時犧牲精確性,關注更多容易被忽略的細節,來做更多的事,得到更多的結果,也就是說我們要有一定的包容錯誤的能力。我們在收集數據時,要主動獲取更多的數據,少加一些限制性條件,然后應用我們處理大數據的能力,或許會獲得意想不到的結果。作者舉了一個谷歌翻譯系統的例子,通過英語作為中轉,進行各語言之間的`轉換。此處的啟發就是用我們最擅長的途徑,不拘泥于特定規則,來達到我們的目的,也就是說我們要先認清自己,不去刻意的模仿,找出最適合自己的一套方法。
對于三,作者指出知道"是什么"就夠了,沒必要知道"為什么",乍一看這個觀點覺得有點無腦,但是結合第二點就合理了,降低對精確性及原因結果的要求,通過對相關數據的廣泛分析,進而得到更豐富更多元的結果。如購物時,系統的購物推薦,并不是肯定你會購買,僅僅是你感興趣進而可能會買就足夠了。其實作者對"相關關系"的強調,主要是大數據強大的預測能力,而且這種預測性能還是相當精確的。以上只是我用作者的觀點佐證他自己的觀點,證明其一定的合理性,但是我是不完全認同的,在航天領域,我們對成功率的要求是極高的,尤其是載人航天領域,我們必須做到萬無一失,我們對每一個結果都會深究其根,找出原因。對于國防生體能成績的分析也是如此,結果只是我們的一個評價機制,而最重要的還是產生這一結果的原因及過程。
第三部分是大數據的管理變革,本來以為作者會講點如何通過大數據來改革管理機制和提高管理效率,沒想到作者只是講了大數據其實就是我們的隱私的暴露,提出了要讓數據采集管理公司對數據的使用負起責任的解決途徑。個人感覺,一是我們在平時要意識到個人隱私的保護,而是相關法律政策的完善,真正的讓大數據服務我們的工作生活,而不是一種變相的威脅。
大數據時代讀后感 13
《大數據時代》,作者是被譽為“大數據時代的預言家”維克托.邁爾-舍恩伯教授和肯尼思.庫克耶。此書是在大數據方興未艾、眾說紛紜的時刻,進一步闡述和厘清大數據的基本概念和特點。
人類歷史長河中,即使是在現代社會日新月異的發展中,人們還主要依賴抽樣數據、局部數據和片面數據,甚至在無法獲得實證數據的時候純粹依賴經驗、理論、假設和價值觀去發現未知領域的規律。因此,人們對世界的認識往往是表面的、膚淺的、簡單的'、扭曲的或者是無知的。維克托指出,大數據時代的來臨使人類第一次有機會和條件,在非常多的領域和非常深入的層次獲得和使用全面數據、完整數據和系統數據,深入探索現實世界的規律,獲取過去不可能獲取的知識,得到過去無法企及的商機。
本書從思維變革、商業變革及管理變革三部分闡述大數據時代已經來臨;列舉了眾多在公共衛生、商業服務領域大數據變革的例子。比如:在思維變革部分,以UPS與汽車修理預測為例,證明知道“是什么”就夠了,沒必要知道“為什么”;在大數據時代,我們不必非得知道現象背后的原因,而是要讓大數據自己“發聲”:UPS國際快遞公司從2000年就開始使用預測性分析來檢測自己全美60000輛車規模的車隊,這樣就能及時的進行防御性的修理。之前UPS每兩三年就會對車輛的零件進行定時更換,但這種方法不太有效,因為有的零件并沒有什么毛病就被換掉了。通過檢測車輛的各個部位,UPS如今只需要更換需要更換的零件,從而節省了好幾百萬美元,這就是通過找出新種類數據之間的相互聯系來解決日常需要。這種方式完成可以應用于我們石油石化行業,我們的大量生產裝置及設備,在建立日常的關鍵部位檢測機制基礎上,形成大量的數據信息,通過對這些數據的科學分析,判斷出需要檢修或更換的零件,從而有效降低運營成本。
當我們一旦“不再追求精確度,不再追求因果關系,而是承認混雜性,探索相關關系”,“思維轉變過來,數據就能巧妙的用來激發新產品和新型服務”。數據正成為巨大的經濟資產,成為新世紀的礦產與石油,將帶來全新的創業方向、商業模式和投資機會。
近年來,伴隨著經濟社會快速發展、深度調整,石油石化產業變革加劇,面臨的四大革命中其中一項就是“數字革命”。因此我們必須牢牢把握數字革命發展大勢,加強數據治理和大數據分析應用,提高企業生產運行與管理水平,擁抱大數據時代的來臨。
大數據時代讀后感 14
去年的“云計算”炒得熱火朝天的,今年的“大數據”又突襲而來。仿佛一夜間,各廠商都紛紛改旗換幟,推起“大數據”來了。于是乎,各企業的CIO也將熱度紛紛轉向關注“大數據”來了。有一張來自《程序員》微博的漫畫很形象。我覺得這張圖,很真實地反映了現實中小企業云計算,大數據的現狀。
不過話又還得說回來,《大數據時代》是本好書。
當然,很多IT知名人士也大力推薦,寫了好多讀后感來表述對這本書的喜歡沒看此書之前,對所謂大數據的概念基本上是一頭霧水,雖則有了解關注過現在也比較火熱的BI,覺得也差不多,可能就是更多的數據,更細致的數據分析與數據挖掘。看過此書后,感覺到之前的想法,只能算是中了一小半吧---巨量的數據,而另一前:著眼于數據關聯性,而非數據精確性,或許才是大數據與現時BI的不同,不僅僅是方法,更多的時思想方法。不過坦白講,到底是數據的關聯性重佳,還是數據的精確性更好,還真的需要時間來檢驗一下,至少從現在的數據分析方法來論,更多的傾向于數據的精確性。
看完此書,我心中的一些問題:
1、什么是大數據?
查了查百度百科,是這樣定義的:大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟件工具,在合理時間內達到擷取、管理、處理、并整理成為幫助企業經營決策更積極目的的資訊。大數據的4V特點:Volume、Velocity、Variety、Veracity這個好像是IBM的定義吧。
以個人的觀點來看:數據海量,存儲海量都是大數據的基本原型吧。
2、大數據適合什么樣的'企業?
誠然,大數據的前提是海量的數據,只有擁有巨量的數據資源,方能從中查找出數據的關聯性,才可以讓通過專業化的處理,讓其為企業產生價值。針對電信運營,互聯網應用這樣海量用戶的數據的大企業,也是在應用大數據的道路上擁有得天獨厚的條件,但是針對中小企業呢?銷售訂單數據?若非百年老店,估計數據也是少得可憐,能用的可能只有消費者數據了吧。貌似大多數廠商,用來舉例的也就是消費都購買行為分析為最多。
同樣,在公共事業類的政府機構,大數據的作用也許也能很好的發揮。反而感覺在大多數中小型企業應用大數據,似乎有點大題小作。書中說:大數據是企業競爭力。誠然,數據是一個企業的核心無形資源(利用得好的話),但是否所有的數據,或都換則方式說:所有的企業都以大數據為競爭力,是否真的合適么?是否在中小企業中,會顯示得小題大做呢?
3、大數據帶來的影響
當一波又一波的IT技術熱潮源源不斷地向我們鋪面而來的時候,你甚至都沒有做好準備,你都要開始迎接它所給你帶來的影響了。經過物聯網,云計算的推波助瀾下,大數據開始登場了。但它到底給我們帶來了什么呢?
1)預測未來書中以Google成功預測了未來可能發生流感的案例來開篇,表明通過大數據的應用,可以為我們的生活起一個保駕護航的指向標。實質很簡單,技術改變世界。
2)變革商業大數據所帶來的商機,同時會衍生出一系列與大數據相關的商業機遇與商業模式,數據的潛在價值會源源不斷地發揮作用可以容易想到的是未來有專門的數據收集,數據分析,數據生成的一條數據產業鏈產生。影響的,當然是IT公司
3)變革思維書中所說:因為有海量的數據作基礎,未來,我們可能更關注數據的相關,而非精細度。對這條,本人還是持保留意見的。
大數據時代讀后感 15
通過讀ViktorMayer-Schonberger的《大數據時代》重新認真思考了大數據,全書以數據為核心,引導人們用數據的思維去理解世界,用數據的思維去解決問題,是推薦讀物。但個人認為本書叫《數據時代》更為合適,因其講了不少統計學、數據收集的故事,“大數據”的故事只占一小部分。
維基百科說大數據由巨型數據集組成,這些數據集大小常超出常用軟件在可接受時間下的收集、庋用、管理和處理能力,或稱巨量數據、海量數據、大資料,大數據的常見特點是3V:Volume、Velocity、Variety。
規模巨大的數據未必是大數據,需滿足她的三個特點。以研究擲硬幣概率的實驗為例,當傳統實驗次數達到一定規模后就能幫助實驗者分析正反面出現的概率,隨著實驗次數的增加,數據大量積累可能越來越支持這一結論,數據達到一定量,它的邊際效應就出現了,數據繼續增加對分析概率還有多少意義呢?按照現代概率學伯努利試驗去帶入函數計算就好了,這僅算是概率學或者是統計學吧。故大數據不是因為單純體積大而大,是因為雜而大,研究硬幣正反面的概率如引入天文學、心理學、材料學、物理學等領域的數據而使之變大,進而研究關聯關系(或因果關系,注:本書不認同因果關系的重要性),從而得出概率的分布,然而大量相關數據的引入,按照傳統分析過程的時間是不可接受的,需利用高效計算資源,迅速把雜而大的處理結果呈現出來,并且實驗者對結果的預期不能要求100%的精確。大數據并不是數據本身,而是一種思維方式。
大數據令人著迷的地方在于用“科學”的辦法挑戰了“預測學”,幫助人們發現未知,幫忙人們進行決策。然而本書作者ViktorMayer-Schonberger強調“大數據不是因果關系,而是相關關系,相關關系比因果關系更重要”,此觀點不能認同,因果關系是宇宙的基本定律,且不說種瓜得瓜、善有善報之類哲學命題,若商家在發現電容器、釘子、高壓鍋有關聯購買關系而去做大量營銷的話豈不是有可能發生更多的波士頓爆炸案①。關聯關系在大數據中被提取出來使用,而不去關心因果關系是一種粗暴的、倒退的處理方式,是作者理解的現代社會浮躁的心里體現。我認為的大數據應該是把看起來不相干的數據放到一起分析,找到某些跨領域的關聯關系,進而推論因果關系,發現其中價值。作者引用了安德森的觀點“現在已經是一個有海量數據的時代,應用數學已經取代了其他的所有學科工具,而且只要數據足夠,就能說明問題”,數據和所有科學的關系,我覺得有點像現在互聯網和其他所有行業的關系一樣,互聯網終究還是一個工具。作者舉了沃爾瑪“尿布與啤酒”③的故事,這也是大家熟知的一個數據分析的故事,但是沃爾瑪真的是這么做的嗎?大家可以去沃爾瑪的時候留意一下。一家大型的超市,如果為了這種所謂相關關系,所有商品用這種關聯關系去擺放,天哪,這將是一家多么混亂的超市,顧客進去將難以區分食品在哪、生活用品在哪!有人可能說這種關聯關系更適合電子商務,是的,但是我還是比較看好已知原因的關聯關系,比如嬰幼兒智力玩具和孕婦減肥放到一起,比如在線播放器旁邊放衛生紙的廣告(哈哈哈,你懂的)。本書用美國折扣零售店塔吉特與懷孕預測②來佐證他的觀點,但恰恰是知道因果關系后商業價值才能更多的體現出來,未知因果關系前顧客的`父親生氣并要求賠償,知道因果關系后才使得這種廣告理所應當并讓客戶接受。
互聯網信息時代數據的積累以及BI、數據倉庫、人工智能、HADOOP、NOSQL等技術的流行,使得人們考慮問題的方式已經發生變化,接下來我們要做的只有接受擁抱數據時代、大數據時代。軟件行業程序上線的變更差錯率是一個考核IT水平的指標,為此很多公司引進了CMMI體系,以求他保障軟件的質量,為此也收集了大量的過程數據。若用數據的思維,是否可能根據之前的各種相關數據預測下次投產變更的成功率?若用大數據的思維,是否可以根據CMMI數據以及程序員開發期間上下班考勤數據、工資發放時間、上線當天天氣情況來綜合預測投產變更的成功率?用大數據的思維,訂餐網站不僅根據之前你定的是咸的還是辣的來給你推薦菜單,可能因為你微博上發了一句“每個月總有那么幾天”修改了訂餐的推薦菜單(哈哈)!故在數據時代,提議童鞋們檢查公司的信息系統,是否有定期刪除“垃圾”日志、數據的機制(Viktor說,即使最平凡的信息業可以具有特殊的價值),為了日益廉價的存儲而刪除日益昂貴的數據,請三思后行吧。
大數據時代讀后感 16
大數據這個詞一直存在但我們很少在這個時代前能有所耳聞,在我讀了維克托寫的大數據之后,我明白了在更早的年代之所以不流行這個詞是因為人們喜歡感性的思考而不是拿數據理性的分析。究其原因,一方面是數據量小,另一方面是人們的思想落后。然而隨著信息時代的到來和云技術的發展,大數據逐漸成為一個可靠的參考標準,以及大數據在諸多領域做出的貢獻足以證明他在這個時代的重要地位。
維克托在書中例舉了大量有關美國在這半個世紀信息開發技術創新的典型案例,從側面向我們闡述了大數據在諸多領域的不同作用,例舉其在醫學方面的作用,在不久之前,你也許可能還會聽到兩個醫生對于一個醫學問題爭論的.喋喋不休,……公說公有理婆說婆有理……,但怎么說都是建立在“我認為”的主觀臆斷之上,幸運地是,大數據的出現給幫助醫生在問題上給予一個正確的指向,通過云端和千千萬萬的數據,可以更清楚還原問題的直觀事實。
這樣的例子在生活中也數不勝數,其力量存在于人們無形的生活中,卻有形的幫助人們解決了在經濟,科學,人文方面的各種問題,通過整合混沌的信息,分析加工我們就能很好的了解自己所處的世界并駕馭在時代的前沿。
大數據時代讀后感 17
“大數據”一詞不知何時在我們的生活悄然出現,為了一探究竟,我便選擇了《大數據時代》一書。
作者先從全局簡單地描述大數據對我們的生活、工作與思維的影響,再從三方面具體地用上百個學術和商業的實例展開寫作。樣本=總體、追求精確性和相關關系等大數據時代具體特點一一現出。在同時,作者也從個人、企業等多角度分析大數據中的隱憂。
書中內容繁多,在此不能各方面概括。此書中雖有許多專有名詞,但作者以其通俗的語言以及許多實例讓我嗅到大數據時代中一抹清新之氣。
為什么是清新的呢?因為書中的內容仿佛向我打開了一個既有點熟悉又有點陌生的世界。我們現在已處于網絡時代,在我們日常簡單的操作中大量數據產生,然而起初我們僅用眾多技術在解決手頭上的問題,那些大數據像沙子中的金子,價值不被發現。到目前,每當我們網上購書時總會看到“猜你喜歡”的欄目、出現谷歌搜索與流感預測、Farecast與飛機票價預測系統等,這些事情的達成全來自于那些曾被忽略的大數據同時也在證明“預測,大數據的核心”這句話,為我們的生活創造了前所未有的可量化的維度。看到書中這部分內容時,我不禁感受到自己的生活已在享大數據帶來的福利,就像“猜你喜歡”欄目讓我觸到更多合我口味的書,讓我看到了以前無法發現的細節。擁有大量數據的公司巨頭如谷歌、亞馬遜大力開發有關大數據的新型產業和研究相關項目。借網絡時代的便利大數據成為了如今最有商業價值的事物,使一切可量化的趨勢也開始出現。“本質上世界是由信息構成的”,面對這句話時,大數據時代仿佛就在眼前。
在感受驚嘆著大數據能為我們做到以往無法想象的事和它巨大的價值時,我認同大數據能極大優化我們的生活,但又不禁為這時代感到擔憂。一旦大數據時代來臨,不僅我們的`隱私可能不再是隱私,就如書中所言“我們時刻暴露在‘第三只眼’下:亞馬遜監視著我們的購物習慣,谷歌監視著我們的購物習慣,而微博似乎什么都知道”,而且利用大數據我們可以預測許多事情并且十分高效,一旦人們依賴大數據極少運用人類自身的創新等能力被數據束縛住,世界只會淪落為一個極少活力的機械環境。而我認為最大的憂患,是大數據時代對人類自身思維、思想、信仰等精神領域的沖擊。如今我們都生活在數據中,大數據時代說不定在幾年后就會逐步來臨,這使我不禁發問:我們一直堅信著信仰著的究竟是什么?我覺得世界說變就變實在令我想不通這個問題。事情都有好壞,我也不知道自己是否杞人憂天。
于是我繼續去探索作者對這問題的思考。“更大的數據在于人本身”,作者還說“我們是在創造更好的未來”,也說“在一個預測的時代里,人類的自由意志不可侵犯,這一點不可輕視。我們在使用大數據時,應當懷有謙恭之心,銘記人性之本”。人類學家克利福德吉爾茲曾說:“努力在可以應用、可以拓展的地方,應用它、拓展它;在不能應用、不能拓展的地方,就停下來。”這些話語仿佛是陽光,驅散我心中對大數據時代的擔憂以及內心對其的恐懼。我認為,在堅守我們內心和自由意志下,大數據才會造福我們人類世界,發揮出它背后對人溫暖的光芒。
面對時代的變革,我會為堅守內心深處的自由意志而努力并“擁抱大數據”。
大數據時代讀后感 18
這一章節,利用馬修莫里導航圖的例子引出了大數據的實踐方式,奇人莫里通過整理航海相關的邊角數據,把整個大西洋按照經緯度劃分了出來,并標注出了溫度、風速和風向,從而發現了洋流,也為船員提供了有效的航海路線,這就是數據的價值體現了。書中也提到了,量化我們周圍的一切,是數據化的核心,將文字變成數據、將方位變成數據,將溝通、情感變成數據,通過大數據,我們會意識到,世界在本質上是由信息構成的。
在工作中,這點也可以作為啟發點,通過對數據的整理,或者說以某種方式采集到相關數據,將數據整理出有價值的信息后,不斷的改善到工作流程、效率、服務方面,也是工作上的創新點。
筆者在書中提到了,數據的潛在價值,并提出了數據創新應用的方法,第一是數據的再利用,數據信息被采集用作特定分析后,在另一個領域或者角色立場下,或許會開發出新的有價值的信息;第二是數據的重組,將不同類別、類型的數據進行重組,產生一個新的數據集合出來,尋找其中的關聯性;第三是數據的擴展,這就需要在記錄數據的同時設計好他的可擴展性;第四是數據的折舊值,數據將會貶值,但是仍會有其潛在價值;第五是數據廢氣,即數據采集時的離散量、離散交互信號,舉例是谷歌與微軟的拼寫檢查;第六是開放數據,數據的開放將會有利于各行各業的使用,并促進全行業數據時代的.發展。這其中又提到了數據估值的概念,在數據使用時價值才會體現出來,而不是在占有本身。
根據所提供價值的不同來源,分別出現三種大數據公司,基于數據本身(采集大量數據的公司)、基于技能(提取用戶的需求,給出數據分析結果的公司)、基于思維(挖掘數據新的價值的公司)。
大數據時代讀后感 19
《時代》這本書讓我對人類社會的未來充滿了期待和信心。作者細致地闡述了大數據時代的背景和發展,揭示了大數據對于人類生產生活的巨大影響。同時,他也指出了大數據所帶來的風險和挑戰,如人類隱私泄露和信息安全等問題。
隨著技術的不斷發展,大數據已經成為人類社會發展的重要動力。它可以幫助我們更加精準地定位問題、解決問題,并且能夠提供更好的服務和決策。例如,在醫療領域中,利用大數據可以更加準確地診斷疾病,提高治療成功率;在教育領域中,利用大數據可以發現學生的學習習慣和問題,更好地幫助他們成長。
當然,大數據時代也需要我們更加重視數據的保護和安全。我們需要加強對數據的管理和監督,防止數據泄露,保護人類隱私。
《大數據時代》這本書讓我看到了未來的希望。大數據將成為推動人類社會發展和進步的`重要力量,我們需要充分利用其優勢,同時也需要重視其風險和挑戰,為人類社會的未來做出更好的貢獻。
大數據時代讀后感 20
世界的本質就是數據,當你掌握了數據,你便掌控了世界—你可以輕而易舉地通過數據中的相關關系預測事物的發展,將一切不利因素扼殺于搖籃之中—這遠勝于"防患于未然"。
《大數據時代》一書,讓我們在觀念上有了三大轉變:要全體不要抽樣,要效率不要絕對精確,要相關不要因果。全書介紹了"大數據"時代三種大的變革:思維變革,商業變革和管理變革。在這些巨大變革如洪水一般的"沖擊"之下,現代社會的運作方式必將有重大的改變,若不順應這種變革的潮流,就像古中國固步自封,最終被堅船利炮打開國門而自己還用著長鉤鐵戟抗爭一樣,不可避免被掠奪,被落于世界進程之后,所以我們必須轉變我們的思想。
"我們不再熱衷于尋找因果關系,而應該尋找事物間的相關關系",我想這句話是本書的核心思想。大數據時代,信息與數據已成為了一切的本源,我們生活在各種數據構成的海洋之中,如果從另一種視角看,就好像無數條"看不見的線"將我們與這些數據聯系到一起,這是我們以前從未有過、從未想過的。大數據改變了我們以前的通過因果關系了解世界的方法,而提供了幾種新的途徑,因為,在大數據時代,我們可以分析更多數據,有時甚至可以處理和某個特別現象相關的所有數據,也就是:樣本=總體;而且,當研究數據如此之多時,我們已不熱衷于"精確",而是"混亂",若不接受"混亂",那么有95%的非結構化數據無法利用,這將無法使我們構建完整的數據世界,在分析更多、更全面的數據之后,我們就可以從這些數據之中發掘它們的相關關系,即以"是什么"而不是"為什么"的角度看待數據,不用管其從何而來,只要分析其如何影響其他事物既可,即"讓數據自己發聲",這些,徹底推翻了人類以前探索數據的方法,展現了一個全新的世界。
這種觀念以驚人的力量給現知識狀況帶來了巨大的沖擊,通過對海量數據的分析,獲得巨大價值的產品和服務,或深刻的洞見。比如谷歌公司,2009年流感流行之時,通過檢測檢索詞條,處理34.5億個不同的數據模型,通過預測并與2007、2008年的美國疾控中心記錄的實際流感病例進行對比后,確定了45條檢索詞條組合,并將其用于一個特定的`數學模型后,預測結果與官方數據相關系數高達97%,這種大數據技術,以前所未有的方式,通過海量數據分析得出流感所傳播的范圍,為預測流感提供了一種更快速、高效的工具。
同時,雖然大數據可為人類造福、對抗病癥,但這僅限于掌握這門技術而言,若不重視這種技術,當我們的對手早于我們一步構建這種數據網絡之時,便是我們的災難,想想,大數據雖核心的在于預測,當敵人通過這種手段預測我方下一步的行動,將是可怕的—比如你的導彈將從何處發射,將飛往哪,你的軍隊動向、目標,總之所有一切"未來"將掌控于敵手,敵方甚至可以借此發現那些將來有"大作為"的人,從而進行滲透或扼殺,這對我們的發展無疑是致命的,所以,盡快加速大數據系統的構建進程是必須的。
對于我們國防生,也必須順應這種發展趨勢,未來的時代必將是數據極易獲取,數據網絡共享化的時代,通過這些數據,建立數據模型,可以準確分析并給出適合每一個人的計劃,如運動量、訓練強度,可以"先知、先覺",及時發現一個人的負面情緒前及時疏導,這些必將成為現實,我們必須跟進時代,做好準備,去應對大數據時代的一切!
【大數據時代讀后感】相關文章:
大數據時代的小數據的閱讀答案12-01
大數據時代閱讀答案09-12
大數據時代數據管理技術研究綜述論文03-04
《大數據時代》讀后感范文03-21
讀數據資本時代有感08-01
《大數據時代》讀后感(精選12篇)12-10
《大數據時代已經來臨》現代文閱讀題及答案10-04
小時代的語錄大匯總65條01-14
大數據時代讀書心得體會(精選20篇)02-27
大數據時代管理會計變革的思考論文03-08