數軸教案范文
數軸教案范文
數軸
教學目標
1.了解數軸的概念和數軸的畫法,掌握數軸的三要素;
2.會用數軸上的點表示有理數,會利用數軸比較有理數的大小;
3.使學生初步了解數形結合的思想方法,培養學生相互聯系的觀點。
教學建議
一、重點、難點分析
本節的重點是初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數,并會比較有理數的大小.難點是正確理解有理數與數軸上點的對應關系。數軸的概念包含兩個內容,一是數軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規定的。另外應該明確的是,所有的有理數都可用數軸上的點表示,但數軸上的點所表示的數并不都是有理數。通過學習,使學生初步掌握用數軸解決問題的方法,為今后充分利用“數軸”這個工具打下基礎.
二、知識結構
有了數軸,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的重要思想方法,本課知識要點如下表:
定義三要素應用
數形結合
規定了原點、正方向、單位長度的直線叫數軸原點
正方向
單位長度幫助理解有理數的概念,每個有理數都可用數軸上的點表示,但數軸上的點并非都是有理數比較有理數大小,數軸上右邊的數總比左邊的數要大
在理解并掌握數軸概念的基礎之上,要會畫出數軸,能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數,要知道所有的有理數都可以用數軸上的點表示,會利用數軸比較有理數的大小。
三、教法建議
小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出數軸的概念.數軸是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是數軸的根本依據。數軸與它所在的位置無關,但為了教學上需要,一般水平放置的數軸,規定從原點向右為正方向。要注意原點位置選擇的任意性。
關于有理數與數軸上的點的對應關系,應該明確的是有理數可以用數軸上的點表示,但數軸上的點與有理數并不存在一一對應的關系。根據幾個有理數在數軸上所對應的點的相互位置關系,應該能夠判斷它們之間的大小關系。通過點與有理數的對應關系及其應用,逐步滲透數形結合的思想。
四、數軸的相關知識點
1.數軸的概念
(1)規定了原點、正方向和單位長度的直線叫做數軸.
這里包含兩個內容:一是數軸的三要素:原點、正方向、單位長度缺一不可.二是這三個要素都是規定的.
(2)數軸能形象地表示數,所有的有理數都可用數軸上的點表示,但數軸上的點所表示的數并不都是有理數.
以數軸是理解有理數概念與運算的重要工具.有了數軸,數和形得到初步結合,數與表示數的圖形(如數軸)相結合的思想是學習數學的重要思想.另外,數軸能直觀地解釋相反數,幫助理解絕對值的意義,還可以比較有理數的大小.因此,應重視對數軸的學習.
2.數軸的畫法
(1)畫直線(一般畫成水平的)、定原點,標出原點“O”.
(2)取原點向右方向為正方向,并標出箭頭.
(3)選適當的長度作為單位長度,并標出…,-3,-2,-1,1,2,3…各點。具體如下圖。
(4)標注數字時,負數的次序不能寫錯,如下圖。
3.用數軸比較有理數的大小
(1)在數軸上表示的兩數,右邊的數總比左邊的數大。
(2)由正、負數在數軸上的位置可知:正數都有大于0,負數都小于0,正數大于一切負數。
(3)比較大小時,用不等號順次連接三個數要防止出現“
”的寫法,正確應寫成“
五、數軸定義的理解
數軸
教學目標
1.了解數軸的概念和數軸的畫法,掌握數軸的三要素;
2.會用數軸上的點表示有理數,會利用數軸比較有理數的大小;
3.使學生初步了解數形結合的思想方法,培養學生相互聯系的觀點。
教學建議
一、重點、難點分析
本節的重點是初步理解數形結合的思想方法,正確掌握數軸畫法和用數軸上的點表示有理數,并會比較有理數的大小.難點是正確理解有理數與數軸上點的對應關系。數軸的概念包含兩個內容,一是數軸的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規定的。另外應該明確的是,所有的有理數都可用數軸上的點表示,但數軸上的點所表示的數并不都是有理數。通過學習,使學生初步掌握用數軸解決問題的方法,為今后充分利用“數軸”這個工具打下基礎.
二、知識結構
有了數軸,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的重要思想方法,本課知識要點如下表:
定義三要素應用
數形結合
規定了原點、正方向、單位長度的直線叫數軸原點
正方向
單位長度幫助理解有理數的概念,每個有理數都可用數軸上的點表示,但數軸上的點并非都是有理數比較有理數大小,數軸上右邊的數總比左邊的數要大
在理解并掌握數軸概念的基礎之上,要會畫出數軸,能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數,要知道所有的有理數都可以用數軸上的點表示,會利用數軸比較有理數的大小。
三、教法建議
小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出數軸的概念.數軸是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是數軸的根本依據。數軸與它所在的位置無關,但為了教學上需要,一般水平放置的數軸,規定從原點向右為正方向。要注意原點位置選擇的任意性。
關于有理數與數軸上的點的對應關系,應該明確的是有理數可以用數軸上的點表示,但數軸上的點與有理數并不存在一一對應的關系。根據幾個有理數在數軸上所對應的點的相互位置關系,應該能夠判斷它們之間的大小關系。通過點與有理數的對應關系及其應用,逐步滲透數形結合的思想。
四、數軸的相關知識點
1.數軸的概念
(1)規定了原點、正方向和單位長度的直線叫做數軸.
這里包含兩個內容:一是數軸的三要素:原點、正方向、單位長度缺一不可.二是這三個要素都是規定的.
(2)數軸能形象地表示數,所有的有理數都可用數軸上的點表示,但數軸上的點所表示的數并不都是有理數.
以數軸是理解有理數概念與運算的重要工具.有了數軸,數和形得到初步結合,數與表示數的圖形(如數軸)相結合的思想是學習數學的重要思想.另外,數軸能直觀地解釋相反數,幫助理解絕對值的意義,還可以比較有理數的大小.因此,應重視對數軸的學習.
2.數軸的畫法
(1)畫直線(一般畫成水平的)、定原點,標出原點“O”.
(2)取原點向右方向為正方向,并標出箭頭.
(3)選適當的長度作為單位長度,并標出…,-3,-2,-1,1,2,3…各點。具體如下圖。
(4)標注數字時,負數的次序不能寫錯,如下圖。
3.用數軸比較有理數的大小
(1)在數軸上表示的兩數,右邊的數總比左邊的數大。
(2)由正、負數在數軸上的位置可知:正數都有大于0,負數都小于0,正數大于一切負數。
(3)比較大小時,用不等號順次連接三個數要防止出現“
”的寫法,正確應寫成“
五、數軸定義的理解
【數軸教案】相關文章:
數學教案模版之數軸03-20
數軸優秀教案(通用11篇)08-30
《左傳》教案10-24
存貨教案02-28
愛蓮說的經典教案03-20
《牧場上的家教案》經典教案設計03-20
《什么蟲》教案01-08
關于《勇氣》的教案03-20
飛天音樂教案10-31
《 西瓜船》教案11-17